• 제목/요약/키워드: Intelligent Speed Estimation

검색결과 97건 처리시간 0.025초

지능형 속도 추정기를 이용한 유도전동기 속도 제어 (Speed Control of an Induction Motor using Intelligent Speed Estimator)

  • 김낙교;최성대
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권7호
    • /
    • pp.437-442
    • /
    • 2005
  • In order to realize the speed control of an induction motor, the information of the rotor speed is needed. So the speed sensor as an encoder or a pulse generator is used to obtain it. But the use of speed sensor occur the some problems in the control system of an induction motor. To solve the problems, the appropriate speed estimation algorithm is used instead of the speed sensor. Also there is the limitation to improve the speed control performance of an induction motor using the existing speed estimation algorithm. Therefore, in this paper, intelligent speed estimator using Fuzzy-Neural systems as adaptive laws in Model Reference Adaptive System is proposed so as to improve the existing estimation algorithm and ,using the rotor speed estimated by the Proposed estimator, the speed control of an induction motor without speed sensor is performed. The computer simulation and the experiment is executed to prove the performance of the speed control system usinu the proposed speed estimator.

SPMSM 드라이브의 속도 센서리스를 위한 하이브리드 지능제어 (Hybrid Intelligent Control for Speed Sensorless of SPMSM Drive)

  • 이정철;이홍균;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권10호
    • /
    • pp.690-696
    • /
    • 2004
  • This paper is proposed a hybrid intelligent controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neural network-fuzzy(NNF) control and speed estimation using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

지능형 속도 추정기를 이용한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction motor using the Intelligent Speed Estimator)

  • 박진수;최성대;김상훈;윤광호;반기종;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.660-662
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

유도전동기의 속도 센서리스 제어를 위한 지능형 속도 추정기의 설계 (Design of Intelligent Speed Estimator for Speed Sensorless Control of Induction Motor)

  • 박진수;최성대;김상훈;고봉운;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2304-2306
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

IPMSM 드라이브의 속도제어를 위한 하이브리드 지능제어 (Hybrid Intelligent Control for Speed Control of IPMSM Drive)

  • 이영실;이정철;이홍균;남수명;김종관;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1245-1247
    • /
    • 2004
  • This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using hybrid intelligent control. The hybrid combination of neural network and adaptive fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using adaptive neural network fuzzy(A-NNF) and estimation of speed using artificial neural network(ANN) controller. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new hybrid intelligent control.

  • PDF

Estimation of Vehicle Driving-Load with Application to Vehicle Intelligent Cruise Control

  • Kyongsu Yi;Lee, Sejin;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.720-726
    • /
    • 2001
  • This paper describes a vehicle driving-load estimation method for application to vehicle Intelligent Cruise Control (ICC). Vehicle driving-load consists of aerodynamic force, rolling resistance, and gravitational force due to road slope and is unknown disturbance in a vehicle dynamic model. The vehicle driving-load has been estimated from engine and wheel speed measurements using a vehicle dynamic model a least square method. The estimated driving-load has been used in the adaptation of throttle/brake control law. The performance of the control law has been investigated via both simulation and vehicle tests. The simulation and test results show that the proposed control law can provide satisfactory vehicle-to-vehicle distance control performance for various driving situations.

  • PDF

HAI 제어기에 의한 IPMSM 드라이브의 속도 추정 및 제어 (Speed Estimation and Control of IPMSM Drive with HAI Controller)

  • 이홍균;이정철;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권4호
    • /
    • pp.220-227
    • /
    • 2005
  • This paper presents hybrid artificial intelligent(HAI) controller based on the vector controlled IPMSM drive system. And it is based on artificial technologies that adaptive neural network fuzzy(A-NNF) is to speed control and artificial neural network(ANN) is to speed estimation. The salient feature of this technique is the HAI controller The hybrid action tolerates any inaccuracies in the fuzzy logic assignment rules or in the neural network stationary weights. Speed estimators using feedforward multilayer and artificial neural network(ANN) are compared. The back-propagation algorithm is easy to derived the estimated speed tracks precisely the actual motor speed. This paper presents the theoretical analysis as well as the simulation results to verify the effectiveness of the new hybrid intelligent control.

Vehicle Reference Dynamics Estimation by Speed and Heading Information Sensed from a Distant Point

  • Yun, Jeonghyeon;Kim, Gyeongmin;Cho, Minhyoung;Park, Byungwoon;Seo, Howon;Kim, Jinsung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권3호
    • /
    • pp.209-215
    • /
    • 2022
  • As intelligent autonomous driving vehicle development has become a big topic around the world, accurate reference dynamics estimation has been more important than before. Current systems generally use speed and heading information sensed from a distant point as a vehicle reference dynamic, however, the dynamics between different points are not same especially during rotating motions. In order to estimate properly estimate the reference dynamics from the information such as velocity and heading sensed at a point distant from the reference point such as center of gravity, this study proposes estimating reference dynamics from any location in the vehicle by combining the Bicycle and Ackermann models. A test system was constructed by implementing multiple GNSS/INS equipment on an Robot Operating System (ROS) and an actual car. Angle and speed errors of 10° and 0.2 m/s have been reduced to 0.2° and 0.06 m/s after applying the suggested method.

HAI 제어를 이용한 IPMSM의 속도 추정 및 제어 (Speed Estimation and Control of IPMSM using HAI Control)

  • 이정철;이홍균;이영실;남수명;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.176-178
    • /
    • 2004
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using hybrid intelligent control. The hybrid combination of neural network and adaptive fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using adaptive neural network fuzzy(A-NNF) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed.

  • PDF

전력선 주파수 모니터링을 위한 Intelligent Electronic Device(IED) 플랫폼 (A Power-line Frequency Monitoring Intelligent Electronic Device(IED) Platform)

  • 전현진;이돈진;전준길;장태규
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.1047-1049
    • /
    • 2009
  • This paper presents an intelligent electronic device(IED) platform which is based on a new frequency estimation algorithm. The IED platform features not only the accurate estimation of frequency but also the fast network-based transmisstion of fault data and waveforms. The simulation results show that the proposed frequency estimation algorithm improves convergence speed, and has lower frequency estimation error compared with those of conventional algorithms. The network-based IED is designed to ensure transmission latency being less than 1.0% of sampling interval.