• Title/Summary/Keyword: Intelligent Network

검색결과 3,277건 처리시간 0.034초

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.

ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구 (A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder)

  • 신병진;이종훈;한상진;박충식
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.57-73
    • /
    • 2021
  • ICT 인프라의 이상탐지를 통한 유지보수와 장애 예방이 중요해지고 있다. 장애 예방을 위해서 이상탐지에 대한 관심이 높아지고 있으며, 지금까지의 다양한 이상탐지 기법 중 최근 연구들에서는 딥러닝을 활용하고 있으며 오토인코더를 활용한 모델을 제안하고 있다. 이는 오토인코더가 다차원 다변량에 대해서도 효과적으로 처리가 가능하다는 것이다. 한편 학습 시에는 많은 컴퓨터 자원이 소모되지만 추론과정에서는 연산을 빠르게 수행할 수 있어 실시간 스트리밍 서비스가 가능하다. 본 연구에서는 기존 연구들과 달리 오토인코더에 2가지 요소를 가미하여 이상탐지의 성능을 높이고자 하였다. 먼저 다차원 데이터가 가지고 있는 속성별 특징을 최대한 부각하여 활용하기 위해 멀티모달 개념을 적용한 멀티모달 오토인코더를 적용하였다. CPU, Memory, network 등 서로 연관이 있는 지표들을 묶어 5개의 모달로 구성하여 학습 성능을 높이고자 하였다. 또한, 시계열 데이터의 특징을 데이터의 차원을 늘리지 않고 효과적으로 학습하기 위하여 조건부 오토인코더(conditional autoencoder) 구조를 활용하는 조건부 멀티모달 오토인코더(Conditional Multimodal Autoencoder, CMAE)를 제안하였다. 제안한 CAME 모델은 비교 실험을 통해 검증했으며, 기존 연구들에서 많이 활용된 오토인코더와 비교하여 AUC, Accuracy, Precision, Recall, F1-score의 성능 평가를 진행한 결과 유니모달 오토인코더(UAE)와 멀티모달 오토인코더(Multimodal Autoencoder, MAE)의 성능을 상회하는 결과를 얻어 이상탐지에 있어 효과적이라는 것을 확인하였다.

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.

R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템 (An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis)

  • 이충석;이석주;최병구
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.79-96
    • /
    • 2012
  • 기술의 발전과 융합이 빠르게 이루어지고 있는 오늘날 유망기술을 어떻게 파악하여, 다양한 후보군들 중에서 최적의 R&D 대상을 어떻게 선정할 것인가에 대한 문제는 주요한 경영의사결정문제 중 하나로 부상하고 있다. 본 연구에서는 이러한 R&D 기술 선정 의사결정을 지원할 수 있는 새로운 지능형 의사결정지원시스템을 제안한다. 본 연구의 의사결정지원시스템은 크게 3가지 모듈로 구성되는데, 우선 첫 번째 모듈인 '기술가치 평가' 모듈에서는 기업이 관심을 갖고 있는 분야의 특허들을 분석하여 유망기술 파악에 요구되는 다양한 차원의 기술가치 평가지수 값들을 산출하는 작업이 이루어진다. 이를 통해, 현재 시점에서의 각 기술의 가치가 다양한 차원에서 평가가 이루어지고 나면, 두 번째 모듈인 '미래기술가치 예측' 모듈에서 이들의 시간 흐름에 따른 변화를 학습한 인공지능 모형을 토대로 각 후보기술들이 미래 시점에 어떤 가치지수값을 갖게 될 것인지 예측값을 산출하게 된다. 마지막 세 번째 모듈인 '최적 R&D 대상기술 선정 지원' 모듈에서는 앞서 두 번째 모듈에서 산출된 각 차원별 예상 가치지수값들을 적절히 가중합하여 기술의 종합적인 미래가치 예측값을 산출하여 의사결정자에게 제공하는 기능을 수행한다. 이를 통해 의사결정자가 자사에 적합한 최적의 R&D 대상기술을 선정할 수 있도록 하였다. 본 연구에서는 제안된 시스템의 적용 가능성을 검증하기 위해, 10년치 특허데이터에 인공신경망 기법을 적용하여 실제 기술가치 예측모형을 구축해 보고, 그 효과를 살펴본다.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례 (Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System)

  • 조원기;김학진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.77-97
    • /
    • 2019
  • 제 4차 산업혁명의 초연결 환경에서 발생하는 많은 양의 데이터는 제 4차 산업혁명을 기존의 생산 환경과 구분지어 주는 주요한 요소이다. 이러한 환경은 데이터를 필요로 하는 동시에 데이터를 생산하는 양면적인 특징을 가진다. 때문에 앞으로의 정보 시스템은 기존의 정보시스템보다 양적인 측면에서 더 많은 데이터를 처리해야 하며, 질적인 측면에서는 많은 데이터 중 사용자의 목적에 부합하는 목표 데이터만을 추출하는 능력이 요구된다. 작은 규모의 정보 시스템에서는 사람이 그 시스템을 정확히 이해하고 필요한 정보를 획득하는 것이 가능하지만, 시스템에 대해 정확한 이해가 어려워진 다양하고 복잡한 시스템에서는 원하는 정보를 획득하는 것이 점점 더 어려워진다. 이러한 문제는 데이터를 사람뿐 아니라 컴퓨터가 이해할 수 있는 온톨로지로 표현하여 다양한 정보처리가 가능하도록 하는 시맨틱 웹(Semantic Web) 구축이 해결책이 될 수 있다. 군에서도 현재 대부분의 업무가 정보 시스템을 통해 이루어지고 있는데, 정보의 입력이나 가공 등 단순처리 중심으로 구축된 기존 시스템이 점점 더 많은 양의 데이터를 포함하게 되면서 시스템을 쉽게 활용하기 위한 노력이 필요한 상황이다. 본 연구에서는 온톨로지를 통한 지능형 의사결정지원시스템의 예로 온톨로지 기반 군수상황관리체계를 제안하고자 한다. 온톨로지 기반 군수상황관리체계는 기존의 군수정보체계의 복잡한 정보를 직관적으로 보여주기 위해 구축된 군수상황관리체계를 온톨로지를 통해 구축하였으며, 성과기반군수지원 계약관리, 부품사전 등의 유용한 기능을 추가 식별하여 온톨로지에 포함하였다. 또한 구축된 온톨로지가 의사결정지원에 활용할 수 있는지를 확인하기 위해 시맨틱 웹 기술을 통해 기본적인 질의응답은 물론 추론 및 함수를 통한 분석기능을 구현하였다.

한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성 (Korean Sentence Generation Using Phoneme-Level LSTM Language Model)

  • 안성만;정여진;이재준;양지헌
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.71-88
    • /
    • 2017
  • 언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.

한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구 (A Study on the Revitalization of Tourism Industry through Big Data Analysis)

  • 이정미;류미나;임규건
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.149-169
    • /
    • 2018
  • 본 연구에서는 한국문화관광연구원에서 조사된 "2013년~2015년 외래 관광객 실태조사"의 약 36,000개 데이터에 대한 빅 데이터 분석을 통해 관광산업 활성화 방안을 도출해 보고자 한다. 이를 위해서 외래 관광객들의 '전반적 만족도', '재방문 의사', '추천의사' 변수에 가장 많은 영향을 끼치는 요인을 분석하고 해당 요인들의 각각에 대한 영향력에 대해 파악 하였다. 본 연구에서는 SPSS IBM Modeler 16.0의 의사결정나무(C5.0, CART, CHAID, QUEST), 인공신경망, 로지스틱 회귀분석의 데이터마이닝 기법을 이용하여 종속변수에 가장 큰 영향을 미치는 상위 변수 7개씩을 각각 도출하였고, 추가적으로 각 독립변수들의 영향력을 심도 있게 파악하기 위하여 R프로그래밍을 활용하여 SPSS IBM Modeler 16.0을 통해 도출된 각 독립변수들의 영향력을 파악하였다. 데이터 분석 결과 '전반적 만족도'에 가장 영향을 미치는 상위 변수 7개는 관광지매력도, 음식만족도, 숙박만족도, 교통수단만족도, 안내서비스만족도, 방문관광지수, 국가로 나타났으며 가장 큰 영향력을 미친 변수는 음식만족도와 관광지매력도로 분석되었다. '재방문 의사'에 가장 영향을 미치는 상위 변수 7개로는 국가, 여행 동기, 활동, 음식만족도, 제일 좋았던 활동, 관광안내서비스만족도, 관광지매력도로 나타났으며 그중 가장 큰 영향력을 미친 변수는 음식만족도와 여행 동기로 분석되었다. 마지막으로 '추천의사'에 영향을 미치는 상위 변수 7개로는 국가, 관광지매력도, 방문관광지수, 음식만족도, 활동, 관광안내서비스만족도, 비용으로 나타났으며 가장 큰 영향력을 미친 변수는 국가, 관광지매력도, 음식만족도로 분석되었다. 따라서 세 변수에 공통적으로 영향을 끼치는 요인은 음식만족도, 관광지매력도로 분석되었으며 해당 요인들이 공통적으로 한국여행에 대한 전반적 만족도와 재방문 의사, 추천의사에 미치는 영향이 크다는 것을 확인할 수 있었다. 본 연구는 외래 관광객들의 한국관광에 대한 활성화 방안을 "외래 관광객 실태조사" 빅 데이터 분석을 통해 규명함으로써 한국 관광 데이터 분석의 활용과 관광 정책 수립의 기초자료로 활용될 수 있을 것으로 기대되며 향후 기업 및 국가차원에서 한국 관광발전에 기여할 수 있는 활성화 방안을 마련하는 자료로 사용될 수 있을 것으로 기대한다.

CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로 (Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding)

  • 박현정;송민채;신경식
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.59-83
    • /
    • 2018
  • 고객과 대중의 니즈를 파악하기 위한 감성분석의 중요성이 커지면서 최근 영어 텍스트를 대상으로 다양한 딥러닝 모델들이 소개되고 있다. 본 연구는 영어와 한국어의 언어적인 차이에 주목하여 딥러닝 모델을 한국어 상품평 텍스트의 감성분석에 적용할 때 부딪히게 되는 기본적인 이슈들에 대하여 실증적으로 살펴본다. 즉, 딥러닝 모델의 입력으로 사용되는 단어 벡터(word vector)를 형태소 수준에서 도출하고, 여러 형태소 벡터(morpheme vector) 도출 대안에 따라 감성분석의 정확도가 어떻게 달라지는지를 비정태적(non-static) CNN(Convolutional Neural Network) 모델을 사용하여 검증한다. 형태소 벡터 도출 대안은 CBOW(Continuous Bag-Of-Words)를 기본적으로 적용하고, 입력 데이터의 종류, 문장 분리와 맞춤법 및 띄어쓰기 교정, 품사 선택, 품사 태그 부착, 고려 형태소의 최소 빈도수 등과 같은 기준에 따라 달라진다. 형태소 벡터 도출 시, 문법 준수도가 낮더라도 감성분석 대상과 같은 도메인의 텍스트를 사용하고, 문장 분리 외에 맞춤법 및 띄어쓰기 전처리를 하며, 분석불능 범주를 포함한 모든 품사를 고려할 때 감성분석의 분류 정확도가 향상되는 결과를 얻었다. 동음이의어 비율이 높은 한국어 특성 때문에 고려한 품사 태그 부착 방안과 포함할 형태소에 대한 최소 빈도수 기준은 뚜렷한 영향이 없는 것으로 나타났다.