• Title/Summary/Keyword: Intelligent Mobile Robot

Search Result 455, Processing Time 0.026 seconds

Position Improvement of a Human-Following Mobile Robot Using Image Information of Walking Human (보행자의 영상정보를 이용한 인간추종 이동로봇의 위치 개선)

  • Jin Tae-Seok;Lee Dong-Heui;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.398-405
    • /
    • 2005
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Also, the control method is proposed to estimate position and direction between the walking human and the mobile robot, and the Kalman filter scheme is used for the estimation of the mobile robot localization. And its performance is verified by the computer simulation and the experiment.

Collision Avoidance for an Autonomous Mobile Robot Using Genetic Algorithms (유전 알고리즘을 이용한 자율 주행 로봇의 장애물 호피)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 1998
  • Navigation is a method to direct a mobile robot without collision when traversing the environment. This is to reach a destination without getting lost. In this paper, global and local path planning in fixed obstacle and moving obstacle using genetic algorithm are presented. First, mobile robot searches optimal global path using genetic algorithm without falling into local minima. Then if it finds a unknown obstacle, it searches new path without crashing obstacle. Also if there is a moving obstacle, mobile robot searches new optimal path without colliding with the obstacles. Various simulation results show the proposed algorithm can search a shortest path effectively.

  • PDF

Implementation of a 3D Interface System for controlling Mobile Robot (모바일 로봇 제어를 위한 3D 인터페이스 시스템의 구현)

  • Kang, Chang-Hun;Lee, Jong-Jin;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.107-110
    • /
    • 2001
  • Recently, there are lots of concerning on robot agent system working for itself with the trends of the research of bio-mimetic system and intelligent robot. In this paper, a virtual 3D interface system is proposed based on Internet for remote controlling and monitoring of mobile robot. The proposed system is constructed as manager-agent model. A worker can order the robot agent move to a new position by clicking the destination on virtual space of 3D graphic interface in manager. Then the robot agent move to the position automatically with avoiding collision by using range finding and autonomous control algorithm. The proposed robot agent system lets us control the mobile robot remotely located more conveniently.

  • PDF

DIND Data Fusion with Covariance Intersection in Intelligent Space with Networked Sensors

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • Latest advances in network sensor technology and state of the art of mobile robot, and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. In this study, as the preliminary step for developing a multi-purpose "Intelligent Space" platform to implement advanced technologies easily to realize smart services to human. We will give an explanation for the ISpace system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. Instead we will focus on the main results with relevance to the DIND data fusion with CI of Intelligent Space. We will conclude by discussing some possible future extensions of ISpace. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions tracking multiple objects, human detection and motion assessment, with the results from the simulations run.

Self localization of Indoor Mobile Robot Using IR Sensors (IR Sensors를 이용한 실내용 이동로봇의 자기위치 추정)

  • Ju, Chil-Gwan;Choe, Min-Hyeok;Yu, Yeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.15-18
    • /
    • 2007
  • 이 논문에서는 Encoder, Gyro, 다수의 IR센서를 이용한 실내용 이동로봇의 자기위치 추정에 관한 방법 중 첫 번째 실험으로 다수의 IR센서로부터 획득한 거리데이터를 이용하여 작성한 환경지도에서 모서리를 검출하고, 이를 바탕으로 각 센서에서 측정된 데이터를 병합하도록 하였다. 마지막으로 얻어진 환경지도와 실제 환경을 비교하여 그 성능을 평가하였다.

  • PDF

Collision Avolidance for Mobile Robot using Genetic Algorithm (유전 알고리즘을 이용한 이동로봇의 장애물 회피)

  • 곽한택;이기성
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.279-282
    • /
    • 1996
  • Collision avoidance is a method to direct a mobile robot without collision when traversing the environment. This kind of navigation is to reach a destination without getting lost. In this paper, we use a genetic algorithm for the path planning and collision avoidance. Genetic algorithm searches for path in the entire, continuous free space and unifies global path planning and local path planning. It is a efficient and effective method when compared with traditional collision avoidance algorithm.

  • PDF

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

Design of a Web-based Autonomous Under-water Mobile Robot Controller Using Neuro-Fuzzy in the Dynamic Environment (동적 환경에서 뉴로-퍼지를 이용한 웹 기반 자율 잠수 이동로봇 제어기 설계)

  • 최규종;신상운;안두성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.77-83
    • /
    • 2003
  • Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.

A Study on Autonomous Driving Mobile Robot by using Intelligent Algorithm

  • Seo, Hyun-Jae;Kim, Hyo-Jae;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.543-547
    • /
    • 2005
  • In this paper, we designed a intelligent autonomous driving robot by using Fuzzy algorithm. The object of designed robot is recognition of obstacle, avoidance of obstacle and safe arrival. We append a suspension system to auxiliary wheel for improvement in stability and movement. The designed robot can arrive at destination where is wanted to go by the old and the weak and the handicapped at indoor hospital and building.

  • PDF

Implementation of a WIPI-based Intelligent Home Service Robot (WIPI 기반의 지능형 홈서비스 로봇의 구현)

  • Kim, Jin-Hwan;Shin, Dong-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.19-28
    • /
    • 2008
  • In this paper, we implemented an intelligent home service robot system which alerts users to danger by wireless internet platforms for interoperability(WIPI) of a cellular phone. This paper discusses the three parts of the system: robot, middleware and mobile system. First, the robot consists of a gas sensor, a fire detector, ultrasonic sensors, motors, a camera and a Bluetooth module. The robot perceives various danger circumstances. Second, the middleware connects the robot and the mobile system. It monitors the robot and sends emergency notification SMS message to the user's cellular phone if in danger. Third, the mobile system sends commands which control the robot using TCP/IP protocol. The proposed scheme is to control the sensors of the robot part through Atmega 128 processor, and the robot and middleware parts will be installed in the household, and will be controled by mobile part from the outside.