• 제목/요약/키워드: Intelligent Hardware

검색결과 320건 처리시간 0.033초

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

지능형 로봇 하드웨어 특허동향 분석 (Analysis for Patent Application Tendency in Intelligent Robot Hardware)

  • 김성민;남윤의;김지관
    • 산업경영시스템학회지
    • /
    • 제30권4호
    • /
    • pp.46-53
    • /
    • 2007
  • This research relates to the patent application tendency about the hardware platform of the intelligent robot among the robotics industry in which the market is more and more expanded. The patent about the hardware field of intelligent robot was analyzed from not only Korea but also U.S., Japanese and Europe which is called as the 3 pole of patent. By this research the government which supervises the nation's research policy can obtain the objective information of the industrial tendency, so it can establish the investment policy of national research and development. And the researchers can set up the research direction for evasion from patent infringement trouble by obtaining the patent application information. This also shows whether their research can be competitive or not.

Behavior Evolution of Autonomous Mobile Robot(AMR) using Genetic Programming Based on Evolvable Hardware

  • Sim, Kwee-Bo;Lee, Dong-Wook;Zhang, Byoung-Tak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.20-25
    • /
    • 2002
  • This paper presents a genetic programming based evolutionary strategy for on-line adaptive learnable evolvable hardware. Genetic programming can be useful control method for evolvable hardware for its unique tree structured chromosome. However it is difficult to represent tree structured chromosome on hardware, and it is difficult to use crossover operator on hardware. Therefore, genetic programming is not so popular as genetic algorithms in evolvable hardware community in spite of its possible strength. We propose a chromosome representation methods and a hardware implementation method that can be helpful to this situation. Our method uses context switchable identical block structure to implement genetic tree on evolvable hardware. We composed an evolutionary strategy for evolvable hardware by combining proposed method with other's striking research results. Proposed method is applied to the autonomous mobile robots cooperation problem to verify its usefulness.

A Study on Embodiment of Evolving Cellular Automata Neural Systems using Evolvable Hardware

  • Sim, Kwee-Bo;Ban, Chang-Bong
    • 한국지능시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.746-753
    • /
    • 2001
  • In this paper, we review the basic concept of Evolvable Hardware first. And we examine genetic algorithm processor and hardware reconfiguration method and implementation. By considering complexity and performance of hardware at the same time, we design genetic algorithm processor using modularization and parallel processing method. And we design frame that has connection structure and logic block on FPGA, and embody reconfigurable hardware that do so that this frame may be reconstructed by RAM. Also we implemented ECANS that information processing system such as living creatures'brain using this hardware reconfiguration method. And we apply ECANS which is implemented using the concept of Evolvable Hardware to time-series prediction problem in order to verify the effectiveness.

  • PDF

Efficient hardware implementation and analysis of true random-number generator based on beta source

  • Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Park, Kyunghwan;Kwon, Youngsu;Kim, Jongbum
    • ETRI Journal
    • /
    • 제42권4호
    • /
    • pp.518-526
    • /
    • 2020
  • This paper presents an efficient hardware random-number generator based on a beta source. The proposed generator counts the values of "0" and "1" and provides a method to distinguish between pseudo-random and true random numbers by comparing them using simple cumulative operations. The random-number generator produces labeled data indicating whether the count value is a pseudo- or true random number according to its bit value based on the generated labeling data. The proposed method is verified using a system based on Verilog RTL coding and LabVIEW for hardware implementation. The generated random numbers were tested according to the NIST SP 800-22 and SP 800-90B standards, and they satisfied the test items specified in the standard. Furthermore, the hardware is efficient and can be used for security, artificial intelligence, and Internet of Things applications in real time.

Balancing Speed, Precision, and Flexibility

  • Tanaka, Yoke
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.937-940
    • /
    • 1993
  • A new hardware architecture achieves high speed, high precision fuzzy inference capabilities while maintaining Flexibility on par with software approaches. This flexibility allows unmodified, uncompromised porting of fuzzy system designs into hardware. The architecture is also scalable and offers data resolutions from 8 bits to 32 bits.

  • PDF

진화하는 셀룰라 오토마타 신경망의 하드웨어 구현에 관한 연구 (A Study on Implementation of Evolving Cellular Automata Neural System)

  • 반창봉;곽상영;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.255-258
    • /
    • 2001
  • This paper is implementation of cellular automata neural network system which is a living creatures' brain using evolving hardware concept. Cellular automata neural network system is based on the development and the evolution, in other words, it is modeled on the ontogeny and phylogeny of natural living things. The proposed system developes each cell's state in neural network by CA. And it regards code of CA rule as individual of genetic algorithm, and evolved by genetic algorithm. In this paper we implement this system using evolving hardware concept Evolving hardware is reconfigurable hardware whose configuration is under the control of an evolutionary algorithm. We design genetic algorithm process for evolutionary algorithm and cells in cellular automata neural network for the construction of reconfigurable system. The effectiveness of the proposed system is verified by applying it to time-series prediction.

  • PDF

DSP와 FPGA를 이용한 지능 제어기의 하드웨어 구현 (Hardware Implementation of an Intelligent Controller with a DSP and an FPGA for Nonlinear Systems)

  • 김성수
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.922-929
    • /
    • 2004
  • In this paper, we develop control hardware such as an FPGA based general purposed intelligent controller with a DSP board to solve nonlinear system control problems. PID control algorithms are implemented in an FPGA and neural network control algorithms are implemented in a BSP board. An FPGA was programmed with VHDL to achieve high performance and flexibility. The additional hardware such as an encoder counter and a PWM generator can be implemented in a single FPGA device. As a result, the noise and power dissipation problems can be minimized and the cost effectiveness can be achieved. To show the performance of the developed controller, it was tested fur nonlinear systems such as a robot hand and an inverted pendulum.

진화하드웨어를 위한 유전자 알고리즘 프로세서(GAP) 설계 (Design of Genetic Algorithm Processor(GAP) for Evolvable Hardware)

  • 심귀보;김태훈
    • 한국지능시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.462-466
    • /
    • 2002
  • GA(Genetic Algorithm)는 자연계 진화를 모방한 계산 알고리즘으로서 단순하고 응용이 쉽기 때문에 여러 분야에 전역적 최적해 탐색에 많이 사용되고 있다. 최근에는 하드웨어를 구성하는 방법의 하나로서 사용되어 진화하드웨어라는 분야를 탄생시켰다. 이와 함께 GA의 연산자체를 하드웨어로 구현하는 GA processor(GAP)의 필요성도 증가하고 있다. 특히 진화하드웨어를 소프트웨어에서 진화시키는 것이 아닌 GAP에 의해 진화시키는 것은 독립된 구조의 진정한 EHW 설계에 필수적이 될 것이다. 본 논문에서는 진화하드웨어의 빠른 재구성을 위한 유전자 알고리즘 프로세서를 설계한다.

컬러재현을 위한 CMAC의 뉴로퍼지 설계 (CMAC Neuro-Fuzzy Design for Color Calibration)

  • 이철희;변오성;문성룡;임기영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.97-100
    • /
    • 2001
  • CMAC model was proposed by Albus [6] to formulate the processing characteristics of the human cerebellum. Instead of the global weight updating scheme used in the back propagation, CMAC use the local weight updating scheme. Therefore, CMAC have the advantage of fast learning and high convergence rate. In this paper, simulate Color Calibration by CMAC in color images and design hardware by VHDL-base high-level synthesis.

  • PDF