• Title/Summary/Keyword: Intelligent Diagnostic System

Search Result 100, Processing Time 0.025 seconds

Developing an Evaluation Model for the CRM Level of Corporation Based on AHP Method. (AHP기법을 이용한 CRM 수준 평가 모형 개발에 관한 연구: 기업의 운영 성과를 중심으로)

  • 이규태;이주연;김영균
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.214-225
    • /
    • 2003
  • Now a day, the company must strengthen the contact-point of the customer who the company has and has to block the secession of the customer by providing services or goods on time. Under this market situation, the corporation extends the CRM for the customer management and strategic management, and set the CRM-strategies up for managing the customer relationship. For this, the present enterprise's level and the business-ability for the management of the customer relationship should be considered. Therefore, in this study, we will analyze the critical factors to set the CRM up as a strategy by studying the literature review. In the critical factors, the factors of enterprise level as well as the technical factor will be included. Secondly, as you know, the BSC is used to evaluate the corporation as a index. In this study the BSC model is changed and rearranged for the applied BSC model to measure the C3M level of companies. Thirdly, based on the model developed, the factors in the first step are classified by levels and weighted values are calculated by using AHP method. As a result, we will show the diagnostic model for check the operational performance of management, marketing and sales etc.

  • PDF

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

Fieldbus Communication Network Requirements for Application of Harsh Environments of Nuclear Power Plant (원전 극한 환경적용을 위한 필드버스 통신망 요건)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • Journal of Information Technology Services
    • /
    • v.8 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • As the result of the rapid development of IT technology, an on-line diagnostic system using the field bus communication network coupled with a smart sensor module will be widely used at the nuclear power plant in the near future. The smart sensor system is very useful for the prompt understanding of abnormal state of the key equipments installed in the nuclear power plant. In this paper, it is assumed that a smart sensor system based on the fieldbus communication network for the surveillance and diagnostics of safety-critical equipments will be installed in the harsh-environment of the nuclear power plant. It means that the key components of fieldbus communication system including microprocessor, FPGA, and ASIC devices, are to be installed in the RPV (reactor pressure vessel) and the RCS (reactor coolant system) area, which is the area of a high dose-rate gamma irradiation fields. Gamma radiation constraints for the DBA (design basis accident) qualification of the RTD sensor installed in the harsh environment of nuclear power plant, are typically on the order of 4 kGy/h. In order to use a field bus communication network as an ad-hoc diagnostics sensor network in the vicinity of the RCS pump area of the nuclear power plant, the robust survivability of IT-based micro-electronic components in such intense gamma-radiation fields therefore should be verified. An intelligent CCD camera system, which are composed of advanced micro-electronics devices based on IT technology, have been gamma irradiated at the dose rate of about 4.2kGy/h during an hour UP to a total dose of 4kGy. The degradation performance of the gamma irradiated CCD camera system is explained.

Implementation of on Expert System to Supervise GIS Arrester Facilities (GIS 피뢰설비 관리를 위한 전문가 시스템 구현)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Il-Kwon;Moon, Seung-Bo;Kwon, Jang-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • This paper dealt with the design and implementation of an expert system to monitor and diagnose the lightning arresters in GIS substations. The expert system consists of a data acquisition module(DAM) based on microprocessor and diagnostic algorithms. The DAM measures and analyzes several parameters necessary for the arrester diagnosis such as system voltages, leakage current components, and temperatures. Also, it includes an intelligent surge counter which can record the date and tin, the polarity, and the amplitude of surge currents. All the data acquired is transmitted to a remote computer by a low rate wireless network specified in IEEE 802.15.4 to avoid electromagnetic intereference under high voltage and large current environments. The decision-making for the arrester diagnosis completes with a Java Expert System Shell(JESS) which is composed of a knowledge base, an inference engine and a graphic user interface(GUI).

Operation diagnostic based on PCA for wastewater treatment (PCA를 이용한 하폐수처리시설 운전상태진단)

  • Jun Byong-Hee;Park Jang-Hwan;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.383-388
    • /
    • 2006
  • SBR is one of the most general sewage/wastewater treatment processes and, particularly, has an advantage in high concentration wastewater treatment like sewage wastewater. A Kernel PCA based fault diagnosis system for biological reaction in full-scale wastewater treatment plant was proposed using only common bio-chemical sensors such as ORP(Oxidation-Reduction Potential) and DO(Dissolved Oxygen). During the SBR operation, the operation status could be divided into normal status and abnormal status such as controller malfunction, influent disturbance and instrumental trouble. For the classification and diagnosis of these statuses, a series of preprocessing, dimension reduction using PCA, LDA, K-PCA and feature reduction was performed. Also, the diagnosis result using differential data was superior to that of raw data, and the fusion data show better results than other data. Also, the results of combination of K-PCA and LDA were better than those of LDA or (PCA+LDA). Finally, the fault recognition rate in case of using only ORP or DO was around maximum 97.03% and the fusion method showed better result of maximum 98.02%.

Study on the Application of Artificial Intelligence Model for CT Quality Control (CT 정도관리를 위한 인공지능 모델 적용에 관한 연구)

  • Ho Seong Hwang;Dong Hyun Kim;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.182-189
    • /
    • 2023
  • CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential device for universal diagnostic test. But Exposure of CT scan is so high that it is regulated and managed with special medical equipment. As the special medical equipment, CT must implement quality control. In detail of quality control, Spatial resolution of existing phantom imaging tests, Contrast resolution and clinical image evaluation are qualitative tests. These tests are not objective, so the reliability of the CT undermine trust. Therefore, by applying an artificial intelligence classification model, we wanted to confirm the possibility of quantitative evaluation of the qualitative evaluation part of the phantom test. We used intelligence classification models (VGG19, DenseNet201, EfficientNet B2, inception_resnet_v2, ResNet50V2, and Xception). And the fine-tuning process used for learning was additionally performed. As a result, in all classification models, the accuracy of spatial resolution was 0.9562 or higher, the precision was 0.9535, the recall was 1, the loss value was 0.1774, and the learning time was from a maximum of 14 minutes to a minimum of 8 minutes and 10 seconds. Through the experimental results, it was concluded that the artificial intelligence model can be applied to CT implements quality control in spatial resolution and contrast resolution.

Panic Disorder Intelligent Health System based on IoT and Context-aware

  • Huan, Meng;Kang, Yun-Jeong;Lee, Sang-won;Choi, Dong-Oun
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.21-30
    • /
    • 2021
  • With the rapid development of artificial intelligence and big data, a lot of medical data is effectively used, and the diagnosis and analysis of diseases has entered the era of intelligence. With the increasing public health awareness, ordinary citizens have also put forward new demands for panic disorder health services. Specifically, people hope to predict the risk of panic disorder as soon as possible and grasp their own condition without leaving home. Against this backdrop, the smart health industry comes into being. In the Internet age, a lot of panic disorder health data has been accumulated, such as diagnostic records, medical record information and electronic files. At the same time, various health monitoring devices emerge one after another, enabling the collection and storage of personal daily health information at any time. How to use the above data to provide people with convenient panic disorder self-assessment services and reduce the incidence of panic disorder in China has become an urgent problem to be solved. In order to solve this problem, this research applies the context awareness to the automatic diagnosis of human diseases. While helping patients find diseases early and get treatment timely, it can effectively assist doctors in making correct diagnosis of diseases and reduce the probability of misdiagnosis and missed diagnosis.

A Study on the Automation of MVDC System-Linked Digital Substation (MVDC 시스템연계 디지털변전소 자동화 연구)

  • Jang, Soon Ho;Koo, Ja Ik;Mun, Cho Rong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.199-204
    • /
    • 2021
  • Digital substation refers to a substation that digitizes functions and communication methods of power facilities such as monitoring, measuring, control, protection, and operation based on IEC 61850, an international standard for the purpose of intelligent power grids. Based on the intelligent operating system, efficient monitoring and control of power facilities is possible, and automatic recovery function and remote control are possible in the event of an accident, enabling rapid power failure recovery. With the development of digital technology and the expansion of the introduction of eco-friendly renewable energy and electric vehicles, the spread of direct current distribution systems is expected to expand. MVDC is a system that utilizes direct current lines with voltage levels and transmission capacities between HVDCs applied to conventional transmission systems and LVDCs from consumers. Converting existing lines in substations, where most power equipment is alternating current centric, to direct current lines will reduce transmission losses and ensure greater current capacity. The process bus of a digital substation is a communication network consisting of communication equipment such as Ethernet switches that connect installed devices between bay level and process level. For MVDC linkage to existing digital substations, the process level was divided into two buses: AC and DC, and a system that can be comprehensively managed in conjunction with diagnostic IEDs as well as surveillance and control was proposed.

An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining (사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구)

  • Lee, Hyung Il;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.47-73
    • /
    • 2020
  • KTX rolling stocks are a system consisting of several machines, electrical devices, and components. The maintenance of the rolling stocks requires considerable expertise and experience of maintenance workers. In the event of a rolling stock failure, the knowledge and experience of the maintainer will result in a difference in the quality of the time and work to solve the problem. So, the resulting availability of the vehicle will vary. Although problem solving is generally based on fault manuals, experienced and skilled professionals can quickly diagnose and take actions by applying personal know-how. Since this knowledge exists in a tacit form, it is difficult to pass it on completely to a successor, and there have been studies that have developed a case-based rolling stock expert system to turn it into a data-driven one. Nonetheless, research on the most commonly used KTX rolling stock on the main-line or the development of a system that extracts text meanings and searches for similar cases is still lacking. Therefore, this study proposes an intelligence supporting system that provides an action guide for emerging failures by using the know-how of these rolling stocks maintenance experts as an example of problem solving. For this purpose, the case base was constructed by collecting the rolling stocks failure data generated from 2015 to 2017, and the integrated dictionary was constructed separately through the case base to include the essential terminology and failure codes in consideration of the specialty of the railway rolling stock sector. Based on a deployed case base, a new failure was retrieved from past cases and the top three most similar failure cases were extracted to propose the actual actions of these cases as a diagnostic guide. In this study, various dimensionality reduction measures were applied to calculate similarity by taking into account the meaningful relationship of failure details in order to compensate for the limitations of the method of searching cases by keyword matching in rolling stock failure expert system studies using case-based reasoning in the precedent case-based expert system studies, and their usefulness was verified through experiments. Among the various dimensionality reduction techniques, similar cases were retrieved by applying three algorithms: Non-negative Matrix Factorization(NMF), Latent Semantic Analysis(LSA), and Doc2Vec to extract the characteristics of the failure and measure the cosine distance between the vectors. The precision, recall, and F-measure methods were used to assess the performance of the proposed actions. To compare the performance of dimensionality reduction techniques, the analysis of variance confirmed that the performance differences of the five algorithms were statistically significant, with a comparison between the algorithm that randomly extracts failure cases with identical failure codes and the algorithm that applies cosine similarity directly based on words. In addition, optimal techniques were derived for practical application by verifying differences in performance depending on the number of dimensions for dimensionality reduction. The analysis showed that the performance of the cosine similarity was higher than that of the dimension using Non-negative Matrix Factorization(NMF) and Latent Semantic Analysis(LSA) and the performance of algorithm using Doc2Vec was the highest. Furthermore, in terms of dimensionality reduction techniques, the larger the number of dimensions at the appropriate level, the better the performance was found. Through this study, we confirmed the usefulness of effective methods of extracting characteristics of data and converting unstructured data when applying case-based reasoning based on which most of the attributes are texted in the special field of KTX rolling stock. Text mining is a trend where studies are being conducted for use in many areas, but studies using such text data are still lacking in an environment where there are a number of specialized terms and limited access to data, such as the one we want to use in this study. In this regard, it is significant that the study first presented an intelligent diagnostic system that suggested action by searching for a case by applying text mining techniques to extract the characteristics of the failure to complement keyword-based case searches. It is expected that this will provide implications as basic study for developing diagnostic systems that can be used immediately on the site.