• 제목/요약/키워드: Intelligent Decision

검색결과 918건 처리시간 0.028초

A Prediction Model for studying the Impact of Separated Families on Students using Decision Tree

  • Ourida Ben boubaker;Ines Hosni;Hala Elhadidy
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.79-84
    • /
    • 2023
  • Social studies show that the number of separated families have lately increased due to different reasons. Despite the causes for family rift, many problems are resulted which affected the children physically and psychologically. This effect may cause them fail in their life especially at school. This paper focuses on the negative reaction of the parents' separation with other factors from the computer science prospective. Since the artificial intelligent field is the most common widespread in computer science, a predictive model is built to predict if a specific child whose parents separated, may complete the school successfully or fail to continue his education. This will be done using Decision Tree that have proved their effectiveness on the predication applications. As an experiment, a sample of individuals is randomly chosen and applied on our prediction model. As a result, this model shows that the separation may cause the child success at school if other factors are satisfied; the intelligent of the guardian, the relation between the parents after the separation, his age at the separation time, etc.

지능공작기계 지식구조의 규칙베이스 구축 (Constructing Rule Base of knowledge structure for Intelligent Machine Tools)

  • 이승우;김동훈;임선종;송준엽;이화기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.954-957
    • /
    • 2005
  • In order to implement Artificial Intelligence, various technologies have been widely used. Artificial Intelligence is applied for many industrial product and machine tools are the center of manufacturing devices in intelligent manufacturing system. The purpose of this paper is to present the construction of Rule Base for knowledge structure that is applicable to machine tools. This system is that decision whether to act in accordance with machine status is support system. It constructs Rule Base of knowledge used of machine toots. The constructed Rule Base facilitates the effective operation and control of machine tools and will provide a systematic way to integrate the expert's knowledge that will apply Intelligent Machine Tools.

  • PDF

서비스 거부 공격에서의 퍼지인식도를 이용한 네트워크기반의 지능적 침입 방지 모델에 관한 연구 (A Study on Network based Intelligent Intrusion Prevention model by using Fuzzy Cognitive Maps on Denial of Service Attack)

  • 이세열;김용수;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.148-153
    • /
    • 2003
  • 서비스 거부 공격은 침입을 위한 침입시도 형태로 나타나며 대표적인 공격으로 Syn Flooding 공격이 있다. Syn Flooding 공격은 신뢰성 및 연결 지향적 전송서비스인 TCP의 종단간에 3-way handshake의 취약점을 이용한 공격이다. 본 논문에서는 네트워크 기반의 지능적 침입 방지 모델을 제안한다. 제안하는 모델은 Syn Flooding 공격을 탐지하기 위하여 패킷 정보를 수집하고 분석한다. 이 모델은 퍼지인식도(Fuzzy Cognitive Maps)를 적용한 결정모듈의 분석 결과를 활용하여 서비스 거부 공격의 위험도를 측정하고 공격에 대응하도록 대응모듈을 학습시킨다. 제안하는 모델은 Syn Flooding 공격의 위험을 격감 또는 방지하는 네트워크 기반의 지능적 침입 방지 모델이다.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

MFAC를 사용한 근접관계의 분류 (Classification of Proximity Relational Using Multiple Fuzzy Alpha Cut(MFAC))

  • 류경현;정환묵
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.139-144
    • /
    • 2008
  • 일반적으로 의사결정의 대상이 되는 현실 시스템은 매우 가변적(variable)이며 때로는 많은 불확실성(uncertainty)이 포함된 상황에 놓일 수 있다. 이러한 문제를 해결하기 위해서, 통계적 방법으로 유의수준이나 확신도, 민감도 분석 등이 사용된다. 본 논문에서는 유사성 평가를 가진 분류 결과의 명확성을 개선하기 위해 MFAC(Multiple Fuzzy Alpha Cut)을 기반으로한 퍼지 의사결정에 대한 방법을 제안한다. 제안된 방법에서 MFAC는 상대적 해밍거리와 max-min 방법 사이의 근접관계에서 근접도를 가지고 다수의 ${\alpha}$-level를 추출하기 위해 그리고 MFAC에 의해 추출된 데이터사이의 분할 구간과 연관된 데이터의 개수를 줄이기 위해 사용된다. 의사결정의 최종 대안을 선택하기 위해서 가중치를 계산한다. 실험결과로부터 제안된 방법은 기존 방법의 분류 성능보다 더 간단하고 명백하며 통계적 방법을 통해 표본 데이터의 유의성을 검정함으로써 의사결정자를 위해 효율적으로 대안을 결정한다는 사실을 알 수 있다.

확장된 Fuzzy AHP를 이용한 효율적인 의사결정 (An efficient Decision-Making using the extended Fuzzy AHP Method(EFAM))

  • 류경현;피수영
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.828-833
    • /
    • 2009
  • 웹상에서 이용할 수 있는 방대한 문서의 집합인 WWW은 사용자를 위한 다양한 정보의 보고이다. 그러나 불필요한 정보의 필터링이나 사용자가 필요한 정보를 검색하는데 많은 시간이 소요되어 효율적인 의사결정을 하는데 어려움이 있다. 본 논문에서는 의사결정에 관한 요소를 계층화 구조로 나타내는 AHP나 Fuzzy AHP방법들을 데이터의 관점에서 대안, 평가기준, 주관적 속성가중치, 개념과 객체 사이에 퍼지 관계를 기반으로 웹 자원을 효과적으로 관리하고 의사결정을 할 수 있는 EFAM(Extended Fuzzy AHP Method) 모델을 제안하였다. 제안한 EFAM 모델은 웹상의 효율적인 문서검색과 특정 영역의 문제를 의사결정하기 위하여 영역의 코퍼스로부터 추출된 개념들이 가지는 의미론적 내용에 감성 기준을 고려함으로써 효율적으로 문서를 추출할 수 있어서 명확한 의사결정을 할 수가 있음을 실험을 통하여 확인한다.

도시부도로 정성적 소통상황 판단 알고리즘 개발 (Development Of Qualitative Traffic Condition Decision Algorithm On Urban Streets)

  • 조준한;김진수;김성호;강원의
    • 한국ITS학회 논문지
    • /
    • 제10권6호
    • /
    • pp.40-52
    • /
    • 2011
  • 최근 지능형교통체계(ITS)는 다기능 검지기, 도시교통정보시스템, 단거리 전용 통신 등 첨단 검지장비가 도입되면서 교통정보의 신뢰성이 중요하게 대두되고 있다. 이 연구는 구간교통정보 산정과 같은 정량적 연구와 다르게 교통류 안정성을 반영한 정성적 소통상황 판단 알고리즘을 개발하였다. 이를 위해서 제한속도별 정성적 소통상황 분류기준을 재정립하고, 실시간 소통상황 판단 유형과 판단지표를 새롭게 제시하였다. 실시간 소통상황 판단 유형은 정성적 소통상황에서 속도추이의 상승, 진동, 하락에 따라 크게 9가지 유형으로 세분화하였다. 소통상황 판단지표는 속도변화추이를 파악하기 위해 과거 5주기 2분 단위 속도, 가속도를 나타내는 값과 부호로 정의한 3개 지표와 시간대별, 속도대별 불안정범위를 설정한 영역으로 정의하였다. 이 연구에서 개발된 소통상황 판단 알고리즘의 성능평가는 실제 검지자료를 이용하여 현장 적용성을 검증하였으며, 교통정보가공체계, 상황판 운영모니터링, 과거이력자료 활용 등에 적용이 가능할 것으로 판단된다.

의사결정나무 기법을 적용한 DSRC 통행속도패턴 분류방안 (Study on the Classification Methodology for DSRC Travel Speed Patterns Using Decision Trees)

  • 이민하;이상수;남궁성;최기주
    • 한국ITS학회 논문지
    • /
    • 제13권2호
    • /
    • pp.1-11
    • /
    • 2014
  • 본 논문의 목적은 DSRC 기반 통행속도 이력데이터를 활용하여 IC-IC 구간 단위의 통행패턴을 도출하는 것이며, 이를 통해 방대한 이력정보 데이터의 활용도를 높이고, 단순하지만 정확성 높은 방법으로 도로의 통행패턴을 용이하게 파악할 수 있게 하는 것이다. 통행패턴 분류는 의사결정나무 기법을 적용하였고, 월 시간대 구간 단위로 분리된 통행패턴을 생성하여 시 공간이 변화되어도 이에 대응 가능하도록 하였다. 경부고속도로 서울TG~안성IC 구간을 대상으로 의사결정나무 기법을 적용한 결과, 요일 기준으로 (월)(화 수 목)(금)(토)(일) 5개 그룹으로 고정 통행패턴이 분류되었다. 분류 결과를 영동, 중부, 중부내륙 고속도로의 9개 구간에 적용하여 통계적 검증을 수행한 결과 약 93%의 적합도를 갖는 것으로 나타났다. 의사결정나무를 통한 통행패턴 오차를 개선하기 위하여 4개의 추가변수를 도입한 결과, "직전월의 소통상황"을 설명변수로 추가할 경우 통행속도 분산이 약 50% 감소함을 확인하였고, 실제 상황에 적용할 경우 소통 원활 시의 오차가 약 4% 감소되었다.

연구자의 논문 게재 이력을 고려한 저널 결정 요인별 중요도 학습 기반의 저널 추천 방법론 (Development of Journal Recommendation Method Considering Importance of Decision Factors Based on Researchers' Paper Publication History)

  • 손연빈;장태우;최예림
    • 인터넷정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.73-79
    • /
    • 2019
  • 연구자는 논문을 투고할 저널을 선택하는 과정에서 저널의 수가 방대하다는 점, 고려할 저널 결정 요인이 다양하다는 점에서 어려움을 겪는다. 이러한 어려움을 해소하기 위해 IRA(intelligent research assistant)의 한 종류로 연구자별로 논문 투고에 적합한 저널을 추천해주는 저널 추천 서비스를 활용할 수 있다. 하지만 현재 운영 중인 저널 추천 서비스의 경우 주제 유사도 및 수치적 필터링을 기반으로 저널 추천을 실행하고 있으며, 이 경우 연구자가 논문 데이터를 입력하지 않으면 주제 유사도를 고려할 수 없고, 수치적 필터링 기능도 연구자 스스로 결정 요인별 수치 범위를 명확하게 정하기에 어려움이 있다는 한계점이 존재한다. 따라서 본 논문에서는 연구자의 논문 게재 이력을 이용해 선호도 행렬을 형성하고, 이를 기반으로 저널 별 선호 점수를 고려한 저널 추천 방법론을 제안한다. 연구자는 다수의 저널 결정 요인에 대해 상이한 중요도를 가지고 있는데, 결정 요인 별 선호 민감도를 계산해 중요도를 학습한 뒤 이를 기반으로 모든 저널에 대한 선호 점수를 도출하여 저널을 추천한다는 점에서 의의가 있다. 실제 데이터를 이용하여 저널 추천실험을 수행했으며 제안 방법론의 우수한 성능을 확인하였다.