• Title/Summary/Keyword: Intelligent Controller

Search Result 1,443, Processing Time 0.033 seconds

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

Intelligent Digital Controller Using Digital Redesign

  • Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.187-193
    • /
    • 2003
  • In this paper, a systematic design method of the intelligent PAM fuzzy controller for nonlinear systems using the efficient tools-Linear Matrix Inequality and the intelligent digital redesign is proposed. In order to digitally control the nonlinear systems, the TS fuzzy model is used for fuzzy modeling of the given nonlinear system. The convex representation technique also can be utilized for obtaining TS fuzzy models. First, the analog fuzzy-model-based controller is designed such that the closed-loop system is globally asymptotically stable in the sense of Lyapunov stability criterion. The simulation results strongly convince us that the proposed method has great potential in the application to the industry.

Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface (지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어)

  • Kho, Jaw-Won;Lim, Dong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

New Sufficient Conditions to Intelligent Digital Redesign for the Improvement of State-Matching Performance (상태-정합 성능 향상을 위한 지능형 디지털 재설계에 관한 새로운 충분조건들)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.293-296
    • /
    • 2006
  • This paper presents new sufficient conditions to an intelligent digital redesign (IDR). The purpose of the IDR is to effectively convert an existing continuous-time fuzzy controller to an equivalent sampled-data fuzzy controller in the sense of the state-matching. The state-matching error between the closed-loop trajectories is carefully analyzed using the integral quadratic functional approach. The problem of designing the sampled-data fuzzy controller to minimize the state-matching error as well as to guarantee the stability is formulated and solved as the convex optimization problem with linear matrix inequality (LMI) constraints.

  • PDF

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot (이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현)

  • Lim, Dong-Cheol;Kuc, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

DESIGN AND DEVELOPMENT OF AN OPTIMAL INTELLIGENT FUZZY LOGIC CONTROLLER FOR LASER TRACKING SYSTEM

  • Lu, Jia;Cannady, James
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2258-2263
    • /
    • 2003
  • This paper presents the design and development of an optimal fuzzy logic controller (FLC) for a laser tracking system. An optimal intelligent fuzzy logic controller was founded on integral criterion of the fuzzy models and three-dimensional fuzzy control. Research had been also concentrated on the methods for multivariable fuzzy models for the purposes of real-time process. Simulation results have shown remarkable tracking performance of this fuzzy PID controller.

  • PDF

On the Auto Tuning of Fuzzy PID Controller

  • Kim, Yoon-Sang;Oh, Hyun-Cheol;Ahn, Doo-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.57-62
    • /
    • 1998
  • This paper presents an auto tuning method of PID controller based on the application of fuzzy logic. The proposed method combined the principles of PID control with fuzzy control, which cam considerably improve the performance index of PID controller. Simulation results show that higher performance and accuracy of overall system for desired value is achieved with our manner when compared to widely-used conventional tuning method.

  • PDF

The Optimal Tuning Algorithm for Fuzzy Controller

  • Oh, Sung-kwun;Park, Jong-jin;Woo, Kwang-bang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.830-833
    • /
    • 1993
  • In this paper, an optimal tuning Algorithms is presented to automatically improve the performance of fuzzy controller, using the simplified reasoning method and the proposed complex method. The method estimates automatically the optimal values of the parameters of fuzzy controller, according to the change rate and limitation condition of output. The controller is applied to plants with dead time. Then, computer simulations are conducted at step input and the performances are evaluated in the ITAE.

  • PDF

Fuzzy control of Induction motor using microprocessor (마이크로프로세서를 이용한 유도 전동기의 퍼지제어)

  • 김동희;오시창;신위재;이증화
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.180-185
    • /
    • 1995
  • In this paper, we designed the speed controller with high accuracy and speedy steady-state response, in Induction motor control system, Fuzzy P-1 controller of Induction motor using Microprocessor have an appropriate fuzzy rule matrix (which is 2-separate Look-up Table) The usefulness of proposed fuzzy P-1 controller will be confirmed by experiments which we compare with conventional P-1 controller.

  • PDF