• Title/Summary/Keyword: Intelligent Autonomous robots

Search Result 108, Processing Time 0.023 seconds

Lifelike Behaviors of Collective Autonomous Mobile Agents

  • Min, Suk-Ki;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.176-180
    • /
    • 1998
  • We may gaze at some peculiar scenes of flocking of birds and fishes. This paper demonstrates that multiple agent mobile robots show complex behaviors from efficient and strategic rules. The simulated flock are realized by a distributed behavioral model and each mobile robot decides its own motion as an individual which moves constantly by sensing the dynamic environment.

  • PDF

Study on Path Planning for Autonomous Mobile Robot using Potential Field (Potential Field를 이용한 자율이동로봇의 경로 계획에 관한 연구)

  • Jung, Kwang-Min;Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.737-742
    • /
    • 2009
  • The popularity of autonomous mobile robots have been rapidly increasing due to their new emerging application area, from room cleaning, tourist guidance to space explorations. However, the development of a satisfactory control algorithm that will enable the autonomous mobile robots to navigate safely especially in dynamic environments is still an open research problem. In this paper, a newly proposed potential field based control method is implemented, analyzed, and improvements are suggest based on experimental results obtain from computer simulations. The experimental results are presented to show the effectiveness of the behavior-based control using the proposed potential field generation technique.

Attitude Learning of Swarm Robot System using Bluetooth Communication Network (블루투스 통신 네트워크를 이용한 군집합로봇의 행동학습)

  • Jin, Hyun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • Through the development of techniques, robots are becomes smaller, and many of robots needed for application are greater and greater. Method of coordinating large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot System is a system that independent autonomous robots in the restricted environment infer their status from preassigned conditions and operate their jobs through the coorperation with each other. Within the SRS,a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Specially, in order to cooperate with other robots, communicating with other robot is one of the essential elements. In such as Bluetooth has many adventages such as low power consumption, small size module package, and various standard procotols, it is rated as one of the efficent communcating system for autonomous robot is developed in this paper. and How to construct and what kind of procedure to develop the communicatry system for group behavior of the SRS under intelligent space is discussed in this paper.

  • PDF

Objects Recognition and Intelligent Walking for Quadruped Robots based on Genetic Programming (4족 보행로봇의 물체 인식 및 GP 기반 지능적 보행)

  • Kim, Young-Kyun;Hyun, Soo-Hwan;Jang, Jae-Young;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.603-609
    • /
    • 2010
  • This paper introduces an objects recognition algorithm based on SURF(Speeded Up Robust Features) and GP(Genetic Programming) based gaits generation. Combining both methods, a recognition based intelligent walking for quadruped robots is proposed. The gait of quadruped robots is generated by means of symbolic regression for each joint trajectories using GP. A position and size of target object are recognized by SURF which enables high speed feature extraction, and then the distance to the object is calculated. Experiments for objects recognition and autonomous walking for quadruped robots are executed for ODE based Webots simulation and real robot.

Design of Ultrasonic Sensor Based Obstacle Recognition Mobile Robot (초음파 센서 기반 장애물 인지 이동 로봇 설계)

  • Moon, Inseok;Hong, Won-Kee;Ryu, Juang-Tak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • Intelligent robots are widely needed in various areas of industry from extremely dangerous environments to service tasks. For autonomous mobile robots, it is significant to move itself safely to a destination point, recognizing its surroundings. Advances in sensor technology and its applications are achieved in order to develop an intelligent robot. In this paper, a mobile robot with a path-finding algorithm is presented. The path-finding algorithm is the one that does not only find a path to designated destination and also recognizes obstacles on the way, calculating its distance. 10 ultrasonic sensor are mounted on the front and rear of the mobile robot to figure out its position. Specular reflection and wide viewing angle, which are inherent characteristics of ultrasonic waves, cause errors in measuring distance.

Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots (모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어)

  • Na, Doo-Young;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.470-477
    • /
    • 2009
  • Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.

Distributed Autonomous Robotic System based on Artificial Immune system and Distributed Genetic Algorithm (인공 면역 시스템과 분산 유전자 알고리즘에 기반한 자율 분산 로봇 시스템)

  • Sim, Kwee-Bo;Hwang, Chul-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System(AIS) based on Artificial Immune System(AIS) and Distributed Genetic Algorithm(DGA). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: dispersion and aggregation. AIS decides one among above two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the DGA in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

Robust Vision-Based Autonomous Navigation Against Environment Changes (환경 변화에 강인한 비전 기반 로봇 자율 주행)

  • Kim, Jungho;Kweon, In So
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Recently many researches on intelligent robots have been studied. An intelligent robot is capable of recognizing environments or objects to autonomously perform specific tasks using sensor readings. One of fundamental problems in vision-based robot applications is to recognize where it is and to decide safe path to perform autonomous navigation. However, previous approaches only consider well-organized environments that there is no moving object and environment changes. In this paper, we introduce a novel navigation strategy to handle occlusions caused by moving objects using various computer vision techniques. Experimental results demonstrate the capability to overcome such difficulties for autonomous navigation.

  • PDF

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.