• Title/Summary/Keyword: Intelligent Algorithm

Search Result 3,422, Processing Time 0.026 seconds

Recognition of Car License Plates using Morphological Information and SOM Algorithm

  • Lim, Eun-Kyung;Kim, Young-Ju;Kim, Dae-Su;Kwang-Baek, Kim
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.648-651
    • /
    • 2003
  • In this paper, we propose the recognition system of a license plate using SOM algorithm. The recognition of license plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate region from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. Therefore, we proposed how to extract license plate region using morphological information and how to recognize the character string using SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the license plate recognition using SOM algorithm was very efficient.

  • PDF

Character Extraction Algorithm from Scenery Images by Parallel and Local Processing

  • Iwakata, Satoshi;Ajioka, Yoshiaki;Hagiwara, Masafumi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.54-57
    • /
    • 2003
  • In this paper, we propose an algorithm extracting character regions from scenery images. This algorithm works under a severe constraint: each pixel of a result image must be derived from only information of their neighbor pixels. This constraint is very important for a low cost device like a mobile camera. The proposed algorithm is represented by the local and parallel image processing. It has been tested for 100 scenery images. A result shows that the proposed algorithm can extract character regions at a rate of more than 90%. The result was obtained without learning any template images. the algorithm is very useful.

  • PDF

Sparse Reconfigurable Adaptive Filter with an Upgraded Connection Constraint Algorithm

  • Chang, Hong;Hwang, Suk-Seung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.305-309
    • /
    • 2011
  • A sparse reconfigurable adaptive filter (SRAF) based on a photonic switch determines the appropriate time delays and weight values for an optical switch implementation of tapped-delay-line (TDL) systems. It is well known that the choice of switch delays is significantly important for efficiently implementing the SRAF. If the same values exist as calculating the sum of weight magnitudes for implementing the connection constraint required by the SRAF, conventional connection algorithm based on sequentially selection the maximum elements might not work perfectly. In an effort to increase the effectiveness of system identification, an upgraded connection algorithm used progressive calculation to obtain the better solution is considered in this paper. The performance of the proposed connection constraint algorithm is illustrated by computer simulation for a system identification application.

Adaptive Structure of Modular Wavelet Neural Network (모듈화된 웨이블렛 신경망의 적응 구조)

  • 서재용;김용택;김성현;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.247-250
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can constructs wavelet neural network according to one's intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristic of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Intelligent Optimization Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography (지능 최적 알고리즘을 이용한 전기임피던스 단층촬영법의 영상복원)

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.513-516
    • /
    • 2002
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents two intelligent optimization algorithm techniques such as genetic algorithm and simulated annealing for the solution of the static EIT inverse problem. We summarize the simulation results for the three algorithm forms: modified Newton-Raphson, genetic algorithm, and simulated annealing.

  • PDF

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

A Study on Color Fuzzy Decision Algorithm in Video Object Segmentation

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • In this paper, we propose the color fuzzy decision algorithm to face segmentation in a color image. Our algorithm can segment without the user's interaction by fuzzy decision marking. And it removes small parts such as a noise using wavelet morphology in the image obtained by applying the fuzzy decision algorithm. Also, it merges and chooses the face region in each quantization image through rough sets. This video object division algorithm is shown to be superior to a conventional algorithm.

Simple Bacteria Cooperative Optimization with Rank Replacement

  • Jung, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.432-436
    • /
    • 2009
  • We have developed a new optimization algorithm termed simple bacteria cooperative optimization (sBCO) based on bacteria behavior patterns [1]. In [1], we have introduced the algorithm with basic operations and showed its feasibility with some function optimization problems. Since the sBCO was the first version with only basic operations, its performance was not so good. In this paper, we adopt a new operation, rank replacement, to the sBCO for improving its performance and compare its results to those of the simple genetic algorithm (sGA) which has been well known and widely used as an optimization algorithm. It was found from the experiments with four function optimization problems that the sBCO with rank replacement was superior to the sGA. This shows that our algorithm can be a good optimization algorithm.

Optimization of Fuzzy Neural Network based Nonlinear Process System Model using Genetic Algorithm (유전자 알고리즘을 이용한 FNNs 기반 비선형공정시스템 모델의 최적화)

  • 최재호;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.267-270
    • /
    • 1997
  • In this paper, we proposed an optimazation method using Genetic Algorithm for nonlinear system modeling. Fuzzy Neural Network(FNNs) was used as basic model of nonlinear system. FNNs was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, We used FNNs which was proposed by Yamakawa. The FNNs was composed Simple Inference and Error Back Propagation Algorithm. To obtain optimal model, parameter of membership function, learning rate and momentum coefficient of FNNs are tuned using genetic algorithm. And we used simplex algorithm additionaly to overcome limit of genetic algorithm. For the purpose of evaluation of proposed method, we applied proposed method to traffic choice process and waste water treatment process, and then obtained more precise model than other previous optimization methods and objective model.

  • PDF

Optimal Design of a 2-Layer Fuzzy Controller Using the Schema Co-Evolutionary Algorithm

  • Byun, Kwang-Sub;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.341-346
    • /
    • 2004
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.