• Title/Summary/Keyword: Intelligence Optimization

Search Result 384, Processing Time 0.028 seconds

Tool Lifecycle Optimization using ν-Asymmetric Support Vector Regression (ν-ASVR을 이용한 공구라이프사이클 최적화)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, ν-ASVR (ν-Asymmetric Support Vector Regression), which considers the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that ν-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, the ratio of the number of data belonging to ⲉ-tube can be adjusted with ν. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases

Mobile Sink Path Planning in Heterogeneous IoT Sensors: a Salp Swarm Algorithm Scheme

  • Hamidouche, Ranida;Aliouat, Zibouda;Ari, Ado Adamou Abba;Gueroui, Abdelhak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2225-2239
    • /
    • 2021
  • To assist in data collection, the use of a mobile sink has been widely suggested in the literature. Due to the limited sensor node's storage capacity, this manner to collect data induces huge latencies and drop packets. Their buffers will be overloaded and lead to network congestion. Recently, a new bio-inspired optimization algorithm appeared. Researchers were inspired by the swarming mechanism of salps and thus creating what is called the Salp Swarm Algorithm (SSA). This paper improves the sink mobility to enhance energy dissipation, throughput, and convergence speed by imitating the salp's movement. The new approach, named the Mobile Sink based on Modified Salp Swarm Algorithm (MSSA), is approved in a heterogeneous Wireless Sensor Network (WSN) data collection. The performance of the MSSA protocol is assessed using several iterations. Results demonstrate that our proposal surpass other literature algorithms in terms of lifespan and throughput.

Prediction of compressive strength of concrete modified with fly ash: Applications of neuro-swarm and neuro-imperialism models

  • Mohammed, Ahmed;Kurda, Rawaz;Armaghani, Danial Jahed;Hasanipanah, Mahdi
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.489-512
    • /
    • 2021
  • In this study, two powerful techniques, namely particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were selected and combined with a pre-developed ANN model aiming at improving its performance prediction of the compressive strength of concrete modified with fly ash. To achieve this study's aims, a comprehensive database with 379 data samples was collected from the available literature. The output of the database is the compressive strength (CS) of concrete samples, which are influenced by 9 parameters as model inputs, namely those related to mix composition. The modeling steps related to ICA-ANN (or neuro-imperialism) and PSO-ANN (or neuro-swarm) were conducted through the use of several parametric studies to design the most influential parameters on these hybrid models. A comparison of the CS values predicted by hybrid intelligence techniques with the experimental CS values confirmed that the neuro-swarm model could provide a higher degree of accuracy than another proposed hybrid model (i.e., neuro-imperialism). The train and test correlation coefficient values of (0.9042 and 0.9137) and (0.8383 and 0.8777) for neuro-swarm and neuro-imperialism models, respectively revealed that although both techniques are capable enough in prediction tasks, the developed neuro-swarm model can be considered as a better alternative technique in mapping the concrete strength behavior.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

Simulator Development for GEO (Geostationary Orbit)-Based Launch Vehicle Flight Trajectory Prediction System (정지궤도 기반 발사체 비행 궤적 추정시스템의 시뮬레이터 개발)

  • Myung, Hwan-Chun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2022
  • The missile early-warning satellite systems have been developed and upgraded by some space-developed nations, under the inevitable trend that the space is more strongly considered as another battle field than before. As the key function of such a satellite-based early warning system, the prediction algorithm of the missile flight trajectory is studied in the paper. In particular, the evolution computation, receiving broad attention in the artificial intelligence area, is applied to the proposed prediction method so that the global optimum-like solution is found avoiding disadvantage of the previous non-linear optimization search tools. Moreover, using the prediction simulator of the launch vehicle flight trajectory which is newly developed in C# and Python, the paper verifies the performance and the feature of the proposed algorithm.

Many-objective Evolutionary Algorithm with Knee point-based Reference Vector Adaptive Adjustment Strategy

  • Zhu, Zhuanghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2976-2990
    • /
    • 2022
  • The adaptive adjustment of reference or weight vectors in decomposition-based methods has been a hot research topic in the evolutionary community over the past few years. Although various methods have been proposed regarding this issue, most of them aim to diversify solutions in the objective space to cover the true Pareto fronts as much as possible. Different from them, this paper proposes a knee point-based reference vector adaptive adjustment strategy to concurrently balance the convergence and diversity. To be specific, the knee point-based reference vector adaptive adjustment strategy firstly utilizes knee points to construct the adaptive reference vectors. After that, a new fitness function is defined mathematically. Then, this paper further designs a many-objective evolutionary algorithm with knee point-based reference vector adaptive adjustment strategy, where the mating operation and environmental selection are designed accordingly. The proposed method is extensively tested on the WFG test suite with 8, 10 and 12 objectives and MPDMP with state-of-the-art optimizers. Extensive experimental results demonstrate the superiority of the proposed method over state-of-the-art optimizers and the practicability of the proposed method in tackling practical many-objective optimization problems.

Meta's Metaverse Platform Design in the Pre-launch and Ignition Life Stage

  • Song, Minzheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.121-131
    • /
    • 2022
  • We look at the initial stage of Meta (previous Facebook)'s new metaverse platform and investigate its platform design in pre-launch and ignition life stage. From the Rocket Model (RM)'s theoretical logic, the results reveal that Meta firstly focuses on investing in key content developers by acquiring virtual reality (VR), video, music content firms and offering production support platform of the augmented reality (AR) content, 'Spark AR' last three years (2019~2021) for attracting high-potential developers and users. In terms of three matching criteria, Meta develops an Artificial Intelligence (AI) powered translation software, partners with Microsoft (MS) for cloud computing and AI, and develops an AI platform for realistic avatar, MyoSuite. In 'connect' function, Meta curates the game concept submitted by game developers, welcomes other game and SNS based metaverse apps, and expands Horizon Worlds (HW) on VR devices to PCs and mobile devices. In 'transact' function, Meta offers 'HW Creator Funding' program for metaverse, launches the first commercialized Meta Avatar Store on Meta's conventional SNS and Messaging apps by inviting all fashion creators to design and sell clothing in this store. Mata also launches an initial test of non-fungible token (NFT) display on Instagram and expands it to Facebook in the US. Lastly, regarding optimization, especially in the face of recent data privacy issues that have adversely affected corporate key performance indicators (KPIs), Meta assures not to collect any new data and to make its privacy policy easier to understand and update its terms of service more user friendly.

A Performance Comparison of Parallel Programming Models on Edge Devices (엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구)

  • Dukyun Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong;Zhuoxi Liang;Xuyao Liu;Markus Feldmann;Jiawen Li
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.531-545
    • /
    • 2023
  • Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.