• 제목/요약/키워드: Intelligence Optimization

검색결과 384건 처리시간 0.028초

A Computationally Effective Remote Health Monitoring Framework using AGTO-MLRC Models for CVD Diagnosis

  • Menda Ebraheem;Aravind Kumar Kondaji;Y Butchi Raju;N Bhupesh Kumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2512-2545
    • /
    • 2024
  • One of the biggest challenges for the medical professionals is spotting cardiovascular issues in the earliest stages. Around the world, Cardiovascular Diseases (CVD) are a major cause of death for almost 18 million people each year. Heart disease is therefore a serious concern that needs to be treated. The numerous elements that affect health, such as excessive blood pressure, elevated cholesterol, aberrant pulse rate, and many other factors, might make it challenging to detect heart disease. Consequently, early disease detection and the development of effective treatments can benefit greatly from the field of artificial intelligence. The purpose of this work is to develop a new IoT based healthcare monitoring framework for the prediction of CVD using machine learning algorithm. Here, the data preprocessing has been performed to create the normalized dataset for improving classification. Then, an Artificial Gorilla Troop Optimization (AGTO) algorithm is deployed to choose the most pertinent features from the normalized dataset. Moreover, the Multi-Linear Regression Classification (MLRC) model is also implemented for accurately categorizing the medical information as whether healthy or CVD affected. The results of the proposed AGTO-MLRC mechanism is validated and compared using the popular benchmarking datasets.

Limit equilibrium and swarm intelligence solutions in analyzing shallow footing's bearing capacity located on two-layered cohesionless soils

  • Hossein Moayedi;Mesut Gor;Mansour Mosallanezhad;Soheil Ghareh;Binh Nguyen Le
    • Geomechanics and Engineering
    • /
    • 제38권4호
    • /
    • pp.439-453
    • /
    • 2024
  • The research findings of two nonlinear machine learning and soft computing models- the Cuckoo optimization algorithm (COA) and the Teaching-learning-based optimization (TLBO) in combination with artificial neural network (ANN)-are presented in this article. Detailed finite element modeling (FEM) of a shallow footing on two layers of cohesionless soil provided the data sets. The models are trained and tested using the FEM outputs. Additionally, various statistical indices are used to compare and evaluate the predicted and calculated models, and the most precise model is then introduced. The most precise model is recommended to estimate the solution after the model assessment process. When the anticipated findings are compared to the FEM data, there is an excellent agreement, which indicates that the TLBO-MLP solutions in this research are reliable (R2=0.9816 for training and 0.99366 for testing). Additionally, the optimized COA-MLP network with a swarm size of 500 was observed to have R2 and RMSE values of (0.9613 and 0.11459) and (0.98017 and 0.09717) for both the normalized training and testing datasets, respectively. Moreover, a straightforward formula for the soft computing model is provided, and an excellent consensus is attained, indicating a high level of dependability for the suggested model.

선내탑재 의사결정지원 시스템을 위한 발라스트 최적화 알고리즘에 관한 연구 (A study on a ballast optimization algorithm for onboard decision support system)

  • 신성철
    • 한국항해항만학회지
    • /
    • 제29권10호
    • /
    • pp.865-870
    • /
    • 2005
  • 선박 침수 사고의 경우, 선박의 운용 책임자가 취할 수 있는 대응방안이 한정되어 있어 정확한고 신속한 의사결정을 위해서는 기존의 안전관련 시스템을 활용한 효율적인 의사결정 지원 시스템이 필요하다. 수밀 및 준수밀 문, 격벽 밸브, 배수 펌프 등과 같이 침수 사고 시작동하는 대부분의 시스템들은 침수가 선박 전체로 전파되는 것을 막도록 충분한 구획분할 정도를 확보하는데 목적이 있다. 침수 시나리오가 파국적이지 않다고 가정하더라도 발라스트 탱크의 사용은 침수 전파 방지와 선박 안정성을 향상하기 위한 매우 효과적인 방안이 될 수 있다. 본 논문에서는 침수 손상 시 최적의 대응방안을 위해 채워져야 하는 발라스트 탱크들을 선정하고, 각 발라스트 탱크의 수위를 결정하는 최적화 알고리즘을 기술한다.

Particle Swarm Optimization based on Vector Gaussian Learning

  • Zhao, Jia;Lv, Li;Wang, Hui;Sun, Hui;Wu, Runxiu;Nie, Jugen;Xie, Zhifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2038-2057
    • /
    • 2017
  • Gaussian learning is a new technology in the computational intelligence area. However, this technology weakens the learning ability of a particle swarm and achieves a lack of diversity. Thus, this paper proposes a vector Gaussian learning strategy and presents an effective approach, named particle swarm optimization based on vector Gaussian learning. The experiments show that the algorithm is more close to the optimal solution and the better search efficiency after we use vector Gaussian learning strategy. The strategy adopts vector Gaussian learning to generate the Gaussian solution of a swarm's optimal location, increases the learning ability of the swarm's optimal location, and maintains the diversity of the swarm. The method divides the states into normal and premature states by analyzing the state threshold of the swarm. If the swarm is in the premature category, the algorithm adopts an inertia weight strategy that decreases linearly in addition to vector Gaussian learning; otherwise, it uses a fixed inertia weight strategy. Experiments are conducted on eight well-known benchmark functions to verify the performance of the new approach. The results demonstrate promising performance of the new method in terms of convergence velocity and precision, with an improved ability to escape from a local optimum.

진화 알고리즘을 이용한 경수로 폐연료의 중수로 재사용을 위한 최적 조합 탐색에 관한 연구 (A Study for searching optimized combination of Spent light water reactor fuel to reuse as heavy water reactor fuel by using evolutionary algorithm)

  • 안종일;정경숙;정태충
    • 지능정보연구
    • /
    • 제3권2호
    • /
    • pp.1-9
    • /
    • 1997
  • 본 논푼에서는 경수로 원자력 발전소의 사용 후 핵연료를 중수로의 핵연료로 재사용하기 위해 사용 후 경수로 핵연료의 최적 조합을 찾는데 진화 알고리즘(Evolutionary Algorithm)을 이용하여 해결해 보고자 한다. 진화 알고리즘은 대규모 문제 공간에서 최적화 문제를 해결하는데 적합한 알고리즘이다. 사용 후 경수로 핵연료에는 중수로에서 사용할 수 있는 유용한 원자들을 많이 포함하고 있지만 핵연료 봉마다 그 함량이 다양하고, 중수로 연료가 되기 위한 제약 조건 때문에 최적 조합 전략이 펼요하다. 사용후 핵연료의 조합 문제는 알고리즘 분야에서 대표적인 조합 최적화 문제인 0/1 Knapsack문제와 같이 Non-Polynomial (NP) Complete문제에 해당한다. 이러한 문제를 해결하기 위해셔는 고전적언 전화 알고리즘의 전략에 기반하여 랜덤 연산자를 이용하되 평가 함수 값이 좋은 방향으로만 탐색을 수행하는 방법이 있으나 이것은 탐색의 효율면에셔 좋지 않다. 따라서 본 연구에서는 벡터 연산자를 이용하여 최적의 해를 보다 빨리 얻을 수 있는 휴리스틱을 사용하는 방법을 제안한다. 본 논문에서는 경수로 핵연료 조합 문제 영역의 모든 지식을 벡터화하여 벡터의 연산만으로 가능성 검사, 해를 평가 하는 방법을 소개한다. 또한 벡터 휴리스틱이 고전적인 진화 알고리즘에 비해 어느 정도의 성능을 보이는지 비교한다.

  • PDF

선내탑재 의사결정지원 시스템을 위한 발라스트 최적화 알고리즘에 관한 연구 (A study on a ballast optimization algorithm for onboard decision support system)

  • 신성철
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 2005
  • 선박 침수 사고의 경우, 선박의 운용 책임자가 취할 수 있는 대응방안이 한정되어 있어 정확한고 신속한 의사결정을 위해서는 기존의 안전관련 시스템을 활용한 효율적인 의사결정 지원 시스템이 필요하다. 수밀 및 준수밀 문, 격벽 밸브, 배수 펌프 둥과 같이 침수 사고 시 작동하는 대부분의 시스템들은 침수가 선박 전체로 전파되는 것을 막도록 충분한 구획분할 정도를 확보하는데 목적이 있다. 침수 시나리오가 파국적이지 않다고 가정하더라도 발라스트 탱크의 사용은 침수 전파 방지와 선박 안정성을 향상하기 위한 매우 효과적인 방안이 될 수 있다. 본 논문에서는 침수 손상 시 최적의 대응방안을 위해 채워져야 하는 발라스트 탱크들을 선정하고, 각 발라스트 탱크의 수위를 결정하는 최적화 알고리즘을 기술한다.

  • PDF

Swell Correction of Shallow Marine Seismic Reflection Data Using Genetic Algorithms

  • park, Sung-Hoon;Kong, Young-Sae;Kim, Hee-Joon;Lee, Byung-Gul
    • Journal of the korean society of oceanography
    • /
    • 제32권4호
    • /
    • pp.163-170
    • /
    • 1997
  • Some CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source and streamer, which are towed under rough sea surface during the data acquisition. The observed time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the swell correction. A new class of global optimization methods known as GA has recently been developed in the field of Artificial Intelligence and has a resemblance with the genetic evolution of biological systems. The basic idea in using GA as an optimization method is to represent a population of possible solutions or models in a chromosome-type encoding and manipulate these encoded models through simulated reproduction, crossover and mutation. GA parameters used in this paper are as follows: population size Q=40, probability of multiple-point crossover P$_c$=0.6, linear relationship of mutation probability P$_m$ from 0.002 to 0.004, and gray code representation are adopted. The number of the model participating in tournament selection (nt) is 3, and the number of expected copies desired for the best population member in the scaling of fitness is 1.5. With above parameters, an optimization run was iterated for 101 generations. The combination of above parameters are found to be optimal for the convergence of the algorithm. The resulting reflection events in every NMO-corrected CMP gather show good alignment and enhanced quality stack section.

  • PDF

빅데이터 분석 적용을 통한 공정 최적화 사례연구: LCD 공정 품질분석을 중심으로 (A Case Study on Product Production Process Optimization using Big Data Analysis: Focusing on the Quality Management of LCD Production)

  • 박종태;이상곤
    • 한국IT서비스학회지
    • /
    • 제21권2호
    • /
    • pp.97-107
    • /
    • 2022
  • Recently, interest in smart factories is increasing. Investments to improve intelligence/automation are also being made continuously in manufacturing plants. Facility automation based on sensor data collection is now essential. In addition, we are operating our factories based on data generated in all areas of production, including production management, facility operation, and quality management, and an integrated standard information system. When producing LCD polarizer products, it is most important to link trace information between data generated by individual production processes. All systems involved in production must ensure that there is no data loss and data integrity is ensured. The large-capacity data collected from individual systems is composed of key values linked to each other. A real-time quality analysis processing system based on connected integrated system data is required. In this study, large-capacity data collection, storage, integration and loss prevention methods were presented for optimization of LCD polarizer production. The identification Risk model of inspection products can be added, and the applicable product model is designed to be continuously expanded. A quality inspection and analysis system that maximizes the yield rate was designed by using the final inspection image of the product using big data technology. In the case of products that are predefined as analysable products, it is designed to be verified with the big data knn analysis model, and individual analysis results are continuously applied to the actual production site to operate in a virtuous cycle structure. Production Optimization was performed by applying it to the currently produced LCD polarizer production line.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Hybrid machine learning with moth-flame optimization methods for strength prediction of CFDST columns under compression

  • Quang-Viet Vu;Dai-Nhan Le;Thai-Hoan Pham;Wei Gao;Sawekchai Tangaramvong
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.679-695
    • /
    • 2024
  • This paper presents a novel technique that combines machine learning (ML) with moth-flame optimization (MFO) methods to predict the axial compressive strength (ACS) of concrete filled double skin steel tubes (CFDST) columns. The proposed model is trained and tested with a dataset containing 125 tests of the CFDST column subjected to compressive loading. Five ML models, including extreme gradient boosting (XGBoost), gradient tree boosting (GBT), categorical gradient boosting (CAT), support vector machines (SVM), and decision tree (DT) algorithms, are utilized in this work. The MFO algorithm is applied to find optimal hyperparameters of these ML models and to determine the most effective model in predicting the ACS of CFDST columns. Predictive results given by some performance metrics reveal that the MFO-CAT model provides superior accuracy compared to other considered models. The accuracy of the MFO-CAT model is validated by comparing its predictive results with existing design codes and formulae. Moreover, the significance and contribution of each feature in the dataset are examined by employing the SHapley Additive exPlanations (SHAP) method. A comprehensive uncertainty quantification on probabilistic characteristics of the ACS of CFDST columns is conducted for the first time to examine the models' responses to variations of input variables in the stochastic environments. Finally, a web-based application is developed to predict ACS of the CFDST column, enabling rapid practical utilization without requesting any programing or machine learning expertise.