• 제목/요약/키워드: Intelligence Network

검색결과 1,754건 처리시간 0.026초

신경회로망 기반 우리나라 산업안전시스템의 모델링 (Neural Network-based Modeling of Industrial Safety System in Korea)

  • 최기흥
    • 한국안전학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2023
  • It is extremely important to design safety-guaranteed industrial processes because such process determine the ultimate outcomes of industrial activities, including worker safety. Application of artificial intelligence (AI) in industrial safety involves modeling industrial safety systems by using vast amounts of safety-related data, accident prediction, and accident prevention based on predictions. As a preliminary step toward realizing AI-based industrial safety in Korea, this study discusses neural network-based modeling of industrial safety systems. The input variables that are the most discriminatory relative to the output variables of industrial safety processes are selected using two information-theoretic measures, namely entropy and cross entropy. Normalized frequency and severity of industrial accidents are selected as the output variables. Our simulation results confirm the effectiveness of the proposed neural network model and, therefore, the feasibility of extending the model to include more input and output variables.

인공지능의 역사, 분류 그리고 발전 방향에 관한 연구 (A Study on the History, Classification and Development Direction of Artificial Intelligence)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.307-312
    • /
    • 2021
  • 인공지능은 오랜 역사가 있으며, 이미지 인식이나 자동번역 분야를 포함한 여러 분야에서 활용되고 있다. 그래서 처음 인공지능을 접하는 경우에 많은 용어와 개념, 기술 때문에 연구의 방향 설정이나 수행에 어려움을 겪는 경우가 많다. 이번 연구는 이러한 어려움을 겪는 연구자들에게 도움이 될 수 있도록 인공지능에 관련된 중요 개념을 정리하고, 지난 60년의 발전 과정을 요약한다. 이를 통하여 방대한 인공지능 기술 활용의 기초를 확립하고 올바른 연구의 방향성을 수립할 수 있다.

Network Traffic Measurement Analysis using Machine Learning

  • Hae-Duck Joshua Jeong
    • 한국인공지능학회지
    • /
    • 제11권2호
    • /
    • pp.19-27
    • /
    • 2023
  • In recent times, an exponential increase in Internet traffic has been observed as a result of advancing development of the Internet of Things, mobile networks with sensors, and communication functions within various devices. Further, the COVID-19 pandemic has inevitably led to an explosion of social network traffic. Within this context, considerable attention has been drawn to research on network traffic analysis based on machine learning. In this paper, we design and develop a new machine learning framework for network traffic analysis whereby normal and abnormal traffic is distinguished from one another. To achieve this, we combine together well-known machine learning algorithms and network traffic analysis techniques. Using one of the most widely used datasets KDD CUP'99 in the Weka and Apache Spark environments, we compare and investigate results obtained from time series type analysis of various aspects including malicious codes, feature extraction, data formalization, network traffic measurement tool implementation. Experimental analysis showed that while both the logistic regression and the support vector machine algorithm were excellent for performance evaluation, among these, the logistic regression algorithm performs better. The quantitative analysis results of our proposed machine learning framework show that this approach is reliable and practical, and the performance of the proposed system and another paper is compared and analyzed. In addition, we determined that the framework developed in the Apache Spark environment exhibits a much faster processing speed in the Spark environment than in Weka as there are more datasets used to create and classify machine learning models.

Artificial neural network for predicting nuclear power plant dynamic behaviors

  • El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3275-3285
    • /
    • 2021
  • A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.

빅데이터, IoT, 인공지능 키워드 네트워크 분석 (Analysis on Big data, IoT, Artificial intelligence using Keyword Network)

  • 구영덕
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1137-1144
    • /
    • 2020
  • 본 논문에서는 빅데이터, IoT, 인공지능 관련 네트워크 분석을 통해 국내 연구동향을 파악하고 관련 시사점 도출을 목적으로 한다. 이를 위해, 2018년 국가연구개발정보를 활용하여 분석을 수행하였으며, 주요 기초 통계 분석과 언어 네트워크 분석을 수행하였다. 분석 결과, 빅데이터, IoT, 인공지능 관련 연구개발은 기초단계, 개발단계를 중심으로 연구가 진행 중이며, 대학과 중소기업의 비중이 높은 것으로 나타났다. 또한 언어 네트워크 분석 결과, 관련 분야는 스마트팜, 헬스케어 분야에 활용하기 위한 연구를 중심으로 이루어 지고 있는 것으로 판단된다. 이러한 연구결과를 바탕으로 본 연구에서는 인공지능을 활용하기 위해서는 빅데이터가 반드시 필요하며, 개인 식별화 연구가 더욱 활발히 진행되어야 한다는 점과 단순 R&D 활동이 아닌 기술사업화가 이루어 지기 위한 전 주기 지원이 필요하며, 적용 분야를 확대할 필요가 있다는 점을 주장하였다.

인공지능 기술이 포함된 전자상거래(G06Q) 관련 특허의 기술 융복합 분석 (Technology convergence analysis of e-commerce(G06Q) related patents with Artificial Intelligence)

  • 심재륜
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.53-58
    • /
    • 2024
  • 본 연구는 우리나라에 출원된 인공지능 기술이 포함된 전자상거래 관련 특허의 기술 융복합 분석에 관한 것으로 사회 연결망 분석(Social Network Analysis)을 이용하여 핵심 기술간 관계를 분석하고 시각화하였다. 사회 연결망 분석을 실시한 결과 인공지능 기술이 포함된 전자상거래 관련 특허에서 상호 기술 네트워크를 구성하는 핵심 IPC 코드는 G06Q, G06F, G06N, G16H, G10L, H04N, G06T, A61B 등으로 조사되었다. 특히 [G06Q-G06F], [G06Q-G06N] 등 데이터 처리 관련 기술 융복합과 [G06Q-G10L], [G06Q-H04N], [G06Q-G06T] 등 음성과 이미지 신호가 중요하게 융합되어 있음을 확인할 수 있다. 본 연구 방법을 활용하면 전자상거래 관련 특허의 미래 기술 트렌드를 확인하고 새로운 비즈니스 모델을 창안할 수 있다.

Mobile Ultra-Broadband, Super Internet-of-Things and Artificial Intelligence for 6G Visions

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.235-245
    • /
    • 2023
  • Smart applications based on the Network of Everything also known as Internet of Everything (IoE) are increasing popularity as network connectivity requires rise further. As a result, there will be a greater need for developing 6G technologies for wireless communications in order to overcome the primary limitations of visible 5G networks. Furthermore, implementing neural networks into 6G will bring remedies for the most complex optimizing networks challenges. Future 6G mobile phone networks must handle huge applications that require data and an increasing amount of users. With a ten-year time skyline from thought to the real world, it is presently time for pondering what 6th era (6G) remote correspondence will be just before 5G application. In this article, we talk about 6G dreams to clear the street for the headway of 6G and then some. We start with the conversation of imaginative 5G organizations and afterward underline the need of exploring 6G. Treating proceeding and impending remote organization improvement in a serious way, we expect 6G to contain three critical components: cell phones super broadband, very The Web of Things (or IoT and falsely clever (artificial intelligence). The 6G project is currently in its early phases, and people everywhere must envision and come up with its conceptualization, realization, implementation, and use cases. To that aim, this article presents an environment for Presented Distributed Artificial Intelligence as-a-Services (DAIaaS) supplying in IoE and 6G applications. The case histories and the DAIaaS architecture have been evaluated in terms of from end to end latency and bandwidth consumption, use of energy, and cost savings, with suggestion to improve efficiency.

Artificial Intelligence in Personalized ICT Learning

  • Volodymyrivna, Krasheninnik Iryna;Vitaliiivna, Chorna Alona;Leonidovych, Koniukhov Serhii;Ibrahimova, Liudmyla;Iryna, Serdiuk
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.159-166
    • /
    • 2022
  • Artificial Intelligence has stimulated every aspect of today's life. Human thinking quality is trying to be involved through digital tools in all research areas of the modern era. The education industry is also leveraging artificial intelligence magical power. Uses of digital technologies in pedagogical paradigms are being observed from the last century. The widespread involvement of artificial intelligence starts reshaping the educational landscape. Adaptive learning is an emerging pedagogical technique that uses computer-based algorithms, tools, and technologies for the learning process. These intelligent practices help at each learning curve stage, from content development to student's exam evaluation. The quality of information technology students and professionals training has also improved drastically with the involvement of artificial intelligence systems. In this paper, we will investigate adopted digital methods in the education sector so far. We will focus on intelligent techniques adopted for information technology students and professionals. Our literature review works on our proposed framework that entails four categories. These categories are communication between teacher and student, improved content design for computing course, evaluation of student's performance and intelligent agent. Our research will present the role of artificial intelligence in reshaping the educational process.

Ensemble of Degraded Artificial Intelligence Modules Against Adversarial Attacks on Neural Networks

  • Sutanto, Richard Evan;Lee, Sukho
    • Journal of information and communication convergence engineering
    • /
    • 제16권3호
    • /
    • pp.148-152
    • /
    • 2018
  • Adversarial attacks on artificial intelligence (AI) systems use adversarial examples to achieve the attack objective. Adversarial examples consist of slightly changed test data, causing AI systems to make false decisions on these examples. When used as a tool for attacking AI systems, this can lead to disastrous results. In this paper, we propose an ensemble of degraded convolutional neural network (CNN) modules, which is more robust to adversarial attacks than conventional CNNs. Each module is trained on degraded images. During testing, images are degraded using various degradation methods, and a final decision is made utilizing a one-hot encoding vector that is obtained by summing up all the output vectors of the modules. Experimental results show that the proposed ensemble network is more resilient to adversarial attacks than conventional networks, while the accuracies for normal images are similar.

표면파의 수치해석을 위한 인공지능 엔진 개발 (Artificial Intelligence Engine for Numerical Analysis of Surface Waves)

  • 곽효경;김재홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.89-96
    • /
    • 2006
  • Nondestructive evaluation using surface waves needs an analytical solution for the reference value to compare with experimental data. Finite element analysis is very powerful tool to simulate the wave propagation, but has some defects. It is very expensive and high time-complexity for the required high resolution. For those reasons, it is hard to implement an optimization problem in the actual situation. The developed engine in this paper can substitute for the finite element analysis of surface waves propagation, and it accomplishes the fast analysis possible to be used in optimization. Including this artificial intelligence engine, most of soft computing algorithms can be applied on the special database. The database of surface waves propagation is easily constructed with the results of finite element analysis after reducing the dimensions of data. The principal wavelet-component analysis is an efficient method to simplify the transient wave signal into some representative peaks. At the end, artificial neural network based on the database make it possible to invent the artificial intelligence engine.

  • PDF