• Title/Summary/Keyword: Intelligence Network

Search Result 1,754, Processing Time 0.028 seconds

A Study on the establishment of IoT management process in terms of business according to Paradigm Shift (패러다임 전환에 의한 기업 측면의 IoT 경영 프로세스 구축방안 연구)

  • Jeong, Min-Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2015
  • This study examined the concepts of the Internet of Things(IoT), the major issue and IoT trend in the domestic and international market. also reviewed the advent of IoT era which caused a 'Paradigm Shift'. This study proposed a solution for the appropriate corresponding strategy in terms of Enterprise. Global competition began in the IoT market. So, Businesses to be competitive and responsive, the government's efforts, as well as the efforts of companies themselves is needed. In particular, in order to cope with the dynamic environment appropriately, faster and more efficient strategy is required. In other words, proposed a management strategy that can respond the IoT competitive era on tipping point through the vision of paradigm shift. We forecasted and proposed the emergence of paradigm shift through a comparative analysis of past management paradigm and IoT management paradigm as follow; I) Knowledge & learning oriented management, II) Technology & innovation oriented management, III) Demand driven management, IV) Global collaboration management. The Knowledge & learning oriented management paradigm is expected to be a new management paradigm due to the development of IT technology development and information processing technology. In addition to the rapid development such as IT infrastructure and processing of data, storage, knowledge sharing and learning has become more important. Currently Hardware-oriented management paradigm will be changed to the software-oriented paradigm. In particular, the software and platform market is a key component of the IoT ecosystem, has been estimated to be led by Technology & innovation oriented management. In 2011, Gartner announced the concept of "Demand-Driven Value Networks(DDVN)", DDVN emphasizes value of the whole of the network. Therefore, Demand driven management paradigm is creating demand for advanced process, not the process corresponding to the demand simply. Global collaboration management paradigm create the value creation through the fusion between technology, between countries, between industries. In particular, cooperation between enterprises that has financial resources and brand power and venture companies with creative ideas and technical will generate positive synergies. Through this, The large enterprises and small companies that can be win-win environment would be built. Cope with the a paradigm shift and to establish a management strategy of Enterprise process, this study utilized the 'RTE cyclone model' which proposed by Gartner. RTE concept consists of three stages, Lead, Operate, Manage. The Lead stage is utilizing capital to strengthen the business competitiveness. This stages has the goal of linking to external stimuli strategy development, also Execute the business strategy of the company for capital and investment activities and environmental changes. Manege stage is to respond appropriately to threats and internalize the goals of the enterprise. Operate stage proceeds to action for increasing the efficiency of the services across the enterprise, also achieve the integration and simplification of the process, with real-time data capture. RTE(Real Time Enterprise) concept has the value for practical use with the management strategy. Appropriately applied in this study, we propose a 'IoT-RTE Cyclone model' which emphasizes the agility of the enterprise. In addition, based on the real-time monitoring, analysis, act through IT and IoT technology. 'IoT-RTE Cyclone model' that could integrate the business processes of the enterprise each sector and support the overall service. therefore the model be used as an effective response strategy for Enterprise. In particular, IoT-RTE Cyclone Model is to respond to external events, waste elements are removed according to the process is repeated. Therefore, it is possible to model the operation of the process more efficient and agile. This IoT-RTE Cyclone Model can be used as an effective response strategy of the enterprise in terms of IoT era of rapidly changing because it supports the overall service of the enterprise. When this model leverages a collaborative system among enterprises it expects breakthrough cost savings through competitiveness, global lead time, minimizing duplication.

Evaluation of Web Service Similarity Assessment Methods (웹서비스 유사성 평가 방법들의 실험적 평가)

  • Hwang, You-Sub
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.1-22
    • /
    • 2009
  • The World Wide Web is transitioning from being a mere collection of documents that contain useful information toward providing a collection of services that perform useful tasks. The emerging Web service technology has been envisioned as the next technological wave and is expected to play an important role in this recent transformation of the Web. By providing interoperable interface standards for application-to-application communication, Web services can be combined with component based software development to promote application interaction and integration both within and across enterprises. To make Web services for service-oriented computing operational, it is important that Web service repositories not only be well-structured but also provide efficient tools for developers to find reusable Web service components that meet their needs. As the potential of Web services for service-oriented computing is being widely recognized, the demand for effective Web service discovery mechanisms is concomitantly growing. A number of techniques for Web service discovery have been proposed, but the discovery challenge has not been satisfactorily addressed. Unfortunately, most existing solutions are either too rudimentary to be useful or too domain dependent to be generalizable. In this paper, we propose a Web service organizing framework that combines clustering techniques with string matching and leverages the semantics of the XML-based service specification in WSDL documents. We believe that this is one of the first attempts at applying data mining techniques in the Web service discovery domain. Our proposed approach has several appealing features : (1) It minimizes the requirement of prior knowledge from both service consumers and publishers; (2) It avoids exploiting domain dependent ontologies; and (3) It is able to visualize the semantic relationships among Web services. We have developed a prototype system based on the proposed framework using an unsupervised artificial neural network and empirically evaluated the proposed approach and tool using real Web service descriptions drawn from operational Web service registries. We report on some preliminary results demonstrating the efficacy of the proposed approach.

  • PDF

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.

Building battery deterioration prediction model using real field data (머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발)

  • Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.243-264
    • /
    • 2018
  • Although the worldwide battery market is recently spurring the development of lithium secondary battery, lead acid batteries (rechargeable batteries) which have good-performance and can be reused are consumed in a wide range of industry fields. However, lead-acid batteries have a serious problem in that deterioration of a battery makes progress quickly in the presence of that degradation of only one cell among several cells which is packed in a battery begins. To overcome this problem, previous researches have attempted to identify the mechanism of deterioration of a battery in many ways. However, most of previous researches have used data obtained in a laboratory to analyze the mechanism of deterioration of a battery but not used data obtained in a real world. The usage of real data can increase the feasibility and the applicability of the findings of a research. Therefore, this study aims to develop a model which predicts the battery deterioration using data obtained in real world. To this end, we collected data which presents change of battery state by attaching sensors enabling to monitor the battery condition in real time to dozens of golf carts operated in the real golf field. As a result, total 16,883 samples were obtained. And then, we developed a model which predicts a precursor phenomenon representing deterioration of a battery by analyzing the data collected from the sensors using machine learning techniques. As initial independent variables, we used 1) inbound time of a cart, 2) outbound time of a cart, 3) duration(from outbound time to charge time), 4) charge amount, 5) used amount, 6) charge efficiency, 7) lowest temperature of battery cell 1 to 6, 8) lowest voltage of battery cell 1 to 6, 9) highest voltage of battery cell 1 to 6, 10) voltage of battery cell 1 to 6 at the beginning of operation, 11) voltage of battery cell 1 to 6 at the end of charge, 12) used amount of battery cell 1 to 6 during operation, 13) used amount of battery during operation(Max-Min), 14) duration of battery use, and 15) highest current during operation. Since the values of the independent variables, lowest temperature of battery cell 1 to 6, lowest voltage of battery cell 1 to 6, highest voltage of battery cell 1 to 6, voltage of battery cell 1 to 6 at the beginning of operation, voltage of battery cell 1 to 6 at the end of charge, and used amount of battery cell 1 to 6 during operation are similar to that of each battery cell, we conducted principal component analysis using verimax orthogonal rotation in order to mitigate the multiple collinearity problem. According to the results, we made new variables by averaging the values of independent variables clustered together, and used them as final independent variables instead of origin variables, thereby reducing the dimension. We used decision tree, logistic regression, Bayesian network as algorithms for building prediction models. And also, we built prediction models using the bagging of each of them, the boosting of each of them, and RandomForest. Experimental results show that the prediction model using the bagging of decision tree yields the best accuracy of 89.3923%. This study has some limitations in that the additional variables which affect the deterioration of battery such as weather (temperature, humidity) and driving habits, did not considered, therefore, we would like to consider the them in the future research. However, the battery deterioration prediction model proposed in the present study is expected to enable effective and efficient management of battery used in the real filed by dramatically and to reduce the cost caused by not detecting battery deterioration accordingly.

GIS-based Market Analysis and Sales Management System : The Case of a Telecommunication Company (시장분석 및 영업관리 역량 강화를 위한 통신사의 GIS 적용 사례)

  • Chang, Nam-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.61-75
    • /
    • 2011
  • A Geographic Information System(GIS) is a system that captures, stores, analyzes, manages and presents data with reference to geographic location data. In the later 1990s and earlier 2000s it was limitedly used in government sectors such as public utility management, urban planning, landscape architecture, and environmental contamination control. However, a growing number of open-source packages running on a range of operating systems enabled many private enterprises to explore the concept of viewing GIS-based sales and customer data over their own computer monitors. K telecommunication company has dominated the Korean telecommunication market by providing diverse services, such as high-speed internet, PSTN(Public Switched Telephone Network), VOLP (Voice Over Internet Protocol), and IPTV(Internet Protocol Television). Even though the telecommunication market in Korea is huge, the competition between major services providers is growing more fierce than ever before. Service providers struggled to acquire as many new customers as possible, attempted to cross sell more products to their regular customers, and made more efforts on retaining the best customers by offering unprecedented benefits. Most service providers including K telecommunication company tried to adopt the concept of customer relationship management(CRM), and analyze customer's demographic and transactional data statistically in order to understand their customer's behavior. However, managing customer information has still remained at the basic level, and the quality and the quantity of customer data were not enough not only to understand the customers but also to design a strategy for marketing and sales. For example, the currently used 3,074 legal regional divisions, which are originally defined by the government, were too broad to calculate sub-regional customer's service subscription and cancellation ratio. Additional external data such as house size, house price, and household demographics are also needed to measure sales potential. Furthermore, making tables and reports were time consuming and they were insufficient to make a clear judgment about the market situation. In 2009, this company needed a dramatic shift in the way marketing and sales activities, and finally developed a dedicated GIS_based market analysis and sales management system. This system made huge improvement in the efficiency with which the company was able to manage and organize all customer and sales related information, and access to those information easily and visually. After the GIS information system was developed, and applied to marketing and sales activities at the corporate level, the company was reported to increase sales and market share substantially. This was due to the fact that by analyzing past market and sales initiatives, creating sales potential, and targeting key markets, the system could make suggestions and enable the company to focus its resources on the demographics most likely to respond to the promotion. This paper reviews subjective and unclear marketing and sales activities that K telecommunication company operated, and introduces the whole process of developing the GIS information system. The process consists of the following 5 modules : (1) Customer profile cleansing and standardization, (2) Internal/External DB enrichment, (3) Segmentation of 3,074 legal regions into 46,590 sub_regions called blocks, (4) GIS data mart design, and (5) GIS system construction. The objective of this case study is to emphasize the need of GIS system and how it works in the private enterprises by reviewing the development process of the K company's market analysis and sales management system. We hope that this paper suggest valuable guideline to companies that consider introducing or constructing a GIS information system.

A digital Audio Watermarking Algorithm using 2D Barcode (2차원 바코드를 이용한 오디오 워터마킹 알고리즘)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • Nowadays there are a lot of issues about copyright infringement in the Internet world because the digital content on the network can be copied and delivered easily. Indeed the copied version has same quality with the original one. So, copyright owners and content provider want a powerful solution to protect their content. The popular one of the solutions was DRM (digital rights management) that is based on encryption technology and rights control. However, DRM-free service was launched after Steve Jobs who is CEO of Apple proposed a new music service paradigm without DRM, and the DRM is disappeared at the online music market. Even though the online music service decided to not equip the DRM solution, copyright owners and content providers are still searching a solution to protect their content. A solution to replace the DRM technology is digital audio watermarking technology which can embed copyright information into the music. In this paper, the author proposed a new audio watermarking algorithm with two approaches. First, the watermark information is generated by two dimensional barcode which has error correction code. So, the information can be recovered by itself if the errors fall into the range of the error tolerance. The other one is to use chirp sequence of CDMA (code division multiple access). These make the algorithm robust to the several malicious attacks. There are many 2D barcodes. Especially, QR code which is one of the matrix barcodes can express the information and the expression is freer than that of the other matrix barcodes. QR code has the square patterns with double at the three corners and these indicate the boundary of the symbol. This feature of the QR code is proper to express the watermark information. That is, because the QR code is 2D barcodes, nonlinear code and matrix code, it can be modulated to the spread spectrum and can be used for the watermarking algorithm. The proposed algorithm assigns the different spread spectrum sequences to the individual users respectively. In the case that the assigned code sequences are orthogonal, we can identify the watermark information of the individual user from an audio content. The algorithm used the Walsh code as an orthogonal code. The watermark information is rearranged to the 1D sequence from 2D barcode and modulated by the Walsh code. The modulated watermark information is embedded into the DCT (discrete cosine transform) domain of the original audio content. For the performance evaluation, I used 3 audio samples, "Amazing Grace", "Oh! Carol" and "Take me home country roads", The attacks for the robustness test were MP3 compression, echo attack, and sub woofer boost. The MP3 compression was performed by a tool of Cool Edit Pro 2.0. The specification of MP3 was CBR(Constant Bit Rate) 128kbps, 44,100Hz, and stereo. The echo attack had the echo with initial volume 70%, decay 75%, and delay 100msec. The sub woofer boost attack was a modification attack of low frequency part in the Fourier coefficients. The test results showed the proposed algorithm is robust to the attacks. In the MP3 attack, the strength of the watermark information is not affected, and then the watermark can be detected from all of the sample audios. In the sub woofer boost attack, the watermark was detected when the strength is 0.3. Also, in the case of echo attack, the watermark can be identified if the strength is greater and equal than 0.5.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

The Effect of Herding Behavior and Perceived Usefulness on Intention to Purchase e-Learning Content: Comparison Analysis by Purchase Experience (무리행동과 지각된 유용성이 이러닝 컨텐츠 구매의도에 미치는 영향: 구매경험에 의한 비교분석)

  • Yoo, Chul-Woo;Kim, Yang-Jin;Moon, Jung-Hoon;Choe, Young-Chan
    • Asia pacific journal of information systems
    • /
    • v.18 no.4
    • /
    • pp.105-130
    • /
    • 2008
  • Consumers of e-learning market differ from those of other markets in that they are replaced in a specific time scale. For example, e-learning contents aimed at highschool senior students cannot be consumed by a specific consumer over the designated period of time. Hence e-learning service providers need to attract new groups of students every year. Due to lack of information on products designed for continuously emerging consumers, the consumers face difficulties in making rational decisions in a short time period. Increased uncertainty of product purchase leads customers to herding behaviors to obtain information of the product from others and imitate them. Taking into consideration of these features of e-learning market, this study will focus on the online herding behavior in purchasing e-learning contents. There is no definite concept for e-learning. However, it is being discussed in a wide range of perspectives from educational engineering to management to e-business etc. Based upon the existing studies, we identify two main view-points regarding e-learning. The first defines e-learning as a concept that includes existing terminologies, such as CBT (Computer Based Training), WBT (Web Based Training), and IBT (Internet Based Training). In this view, e-learning utilizes IT in order to support professors and a part of or entire education systems. In the second perspective, e-learning is defined as the usage of Internet technology to deliver diverse intelligence and achievement enhancing solutions. In other words, only the educations that are done through the Internet and network can be classified as e-learning. We take the second definition of e-learning for our working definition. The main goal of this study is to investigate what factors affect consumer intention to purchase e-learning contents and to identify the differential impact of the factors between consumers with purchase experience and those without the experience. To accomplish the goal of this study, it focuses on herding behavior and perceived usefulness as antecedents to behavioral intention. The proposed research model in the study extends the Technology Acceptance Model by adding herding behavior and usability to take into account the unique characteristics of e-learning content market and e-learning systems use, respectively. The current study also includes consumer experience with e-learning content purchase because the previous experience is believed to affect purchasing intention when consumers buy experience goods or services. Previous studies on e-learning did not consider the characteristics of e-learning contents market and the differential impact of consumer experience on the relationship between the antecedents and behavioral intention, which is the target of this study. This study employs a survey method to empirically test the proposed research model. A survey questionnaire was developed and distributed to 629 informants. 528 responses were collected, which consist of potential customer group (n = 133) and experienced customer group (n = 395). The data were analyzed using PLS method, a structural equation modeling method. Overall, both herding behavior and perceived usefulness influence consumer intention to purchase e-learning contents. In detail, in the case of potential customer group, herding behavior has stronger effect on purchase intention than does perceived usefulness. However, in the case of shopping-experienced customer group, perceived usefulness has stronger effect than does herding behavior. In sum, the results of the analysis show that with regard to purchasing experience, perceived usefulness and herding behavior had differential effects upon the purchase of e-learning contents. As a follow-up analysis, the interaction effects of the number of purchase transaction and herding behavior/perceived usefulness on purchase intention were investigated. The results show that there are no interaction effects. This study contributes to the literature in a couple of ways. From a theoretical perspective, this study examined and showed evidence that the characteristics of e-learning market such as continuous renewal of consumers and thus high uncertainty and individual experiences are important factors to be considered when the purchase intention of e-learning content is studied. This study can be used as a basis for future studies on e-learning success. From a practical perspective, this study provides several important implications on what types of marketing strategies e-learning companies need to build. The bottom lines of these strategies include target group attraction, word-of-mouth management, enhancement of web site usability quality, etc. The limitations of this study are also discussed for future studies.

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.