• Title/Summary/Keyword: Integrity verification

Search Result 255, Processing Time 0.024 seconds

Seismic Analysis and Vibration Test of HANARO In-Chimney Bracket (하나로 침니내부지지대의 내진해석 및 진동시험)

  • 류정수;윤두병
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.481-488
    • /
    • 2001
  • The HANARO in-chimney bracket was proposed as a structure which supports the guide tubes of irradiation facilities at the irradiation sites of CT, IR and OR4/5 in HANARO core for the reduction of flow-induced vibration and seismic response of the irradiation facilities. For the evaluation of the structural integrity of the in-chimney bracket, its finite element model is developed. The seismic response analysis was performed for the in-chimney bracket and related reactor structures, under the response spectrum of OBE and SSE. The analysis results show that stress values of the in-chimney bracket and reactor structures for the seismic loads are within the ASME code limits. It is also confirmed that its fatigue usage factor is much less than 1.0. For the verification of the implementation effects of the in-chimney bracket, the vibration level of the guide tube of the instrumented fuel assembly, which is subjected to fluid-induced vibration, was measured and analyzed. The vibration analysis results demonstrate that the vibration level of the instrumented fuel assembly has been remarkably reduced after installing the in-chimney bracket. Therefore, when the in-chimney bracket is installed at the reactor chimney, any damage on the structural integrity is not expected.

  • PDF

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.

Design of Electronic ID System Satisfying Security Requirements of Authentication Certificate Using Fingerprint Recognition (지문 인식을 이용하여 공인인증서의 보안 요건을 만족하는 전자 신분증 시스템의 설계)

  • Lee, Chongho;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.610-616
    • /
    • 2015
  • In this paper, an electronic ID system satisfying security requirements of authentication certificate was designed using fingerprint recognition. The proposed electronic ID system generates a digital signature with forgery prevention, confidentiality, content integrity, and personal identification (=non-repudiation) using fingerprint information, and also encrypts, sends, and verify it. The proposed electronic ID system exploits fingerprint instead of user password, so it avoids leakage and hijacking. And it provides same legal force as conventional authentication certificate. The proposed electronic ID consists of 4 modules, i.e. HSM device, verification server, CA server, and RA client. Prototypes of all modules are designed and verified to have correct operation.

Research on Development of Digital Forensics based Digital Records Migration Procedure and Tool (디지털 포렌식 기반의 전자기록물 이관 절차 및 도구 개발에 관한 연구)

  • Lee, Seokcheol;Yoo, Hyunguk;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.3
    • /
    • pp.571-580
    • /
    • 2014
  • Digital Records, which are created, stored, and managed in digital form, contains security vulnerability such as data modification, due to the characteristic of digital data. Therefore it is necessary to guarantee the reliability by verification of integrity and authenticity when managing digital records. This paper propose digital forensics based migration process for electronic records by analyzing legacy digital forensics process, and derives the requirements to develop digital forensics based electronic records migration tool through analyzing trends of abroad digital records migration technique and tool. Based on these develop digital forensic based digital records migration tool to guarantee integrity and authenticity of digital records.

Integrity Assessment of Sharp Flaw in CANDU Pressure Tube Using Probabilistic Fracture Mechanics (확률론적 파괴역학을 도입한 CANDU 압력관의 예리한 결함에 대한 건전성평가)

  • Lee, Jun-Seong;Gwak, Sang-Rok;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.653-659
    • /
    • 2002
  • This paper describes a probabilistic fracture mechanics(PFM) analysis based on Monte Carlo(MC) simulation. In the analysis of CANDU pressure tube, the depth and aspect ratio of an initial semi-elliptical surface crack, a fracture toughness value and delayed hydride cracking(DHC) velocity are assumed to be probabilistic variables. As an example, some failure probabilities of piping and CANDU pressure tube are calculated using MC method with the stratified sampling MC technique, taking analysis conditions of normal operations. In the stratified MC simulation, a sampling space of probabilistic variables is divided into a number of small cells. For the verification of analysis results, a comparison study of the PFM analysis using other commercial code is carried out and a good agreement was observed between those results.

Hyperledger Fabric and Asymmetric Key Encryption for Health Information Management Server (하이퍼레저 패브릭과 비대칭키 암호화 기술을 결합한 건강정보 관리서버)

  • Han, Hyegyeong;Hwang, Heejoung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.922-931
    • /
    • 2022
  • Recently, the need for health information management platforms has been increasing for efficient medical and IT technology research. However, health information is requiring security management by law. When permissioned blockchain technology is used to manage health information, the integrity is provided because only the authenticated users participate in bock generation. However, if the blockchain server is attacked, it is difficult to provide security because user authentication, block generation, and block verification are all performed on the blockchain server. In this paper, therefore, we propose a Health Information Management Server, which uses a permissioned blockchain algorithm and asymmetric cryptography. Health information is managed as a blockchain transaction to maintain the integrity, and the actual data are encrypted with an asymmetric key. Since using a private key kept in the institute local environment, the data confidentiality is maintained, even if the server is attacked. 1,000 transactions were requested, as a result, it was found that the server's average response time was 6,140ms, and the average turnaround time of bock generation was 368ms, which were excellent compared to those of conventional technology. This paper is that a model was proposed to overcome the limitations of permissioned blockchains.

A Real-Time Certificate Status Verification Method based on Reduction Signature (축약 서명 기반의 실시간 인증서 상태 검증 기법)

  • Kim Hyun Chul;Ahn Jae Myoung;Lee Yong Jun;Oh Hae Seok
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.301-308
    • /
    • 2005
  • According to banking online transaction grows very rapidly, guarantee validity about business transaction has more meaning. To offer guarantee validity about banking online transaction efficiently, certificate status verification system is required that can an ieai-time offer identity certification, data integrity, guarantee confidentiality, non-repudiation. Existing real-time certificate status verification system is structural concentration problem generated that one node handling all transactions. And every time status verification is requested, network overload and communication bottleneck are occurred because ail useless informations are transmitted. it does not fit to banking transaction which make much account of real response time because of these problem. To improve problem by unnecessary information and structural concentration when existing real-time certificate status protocol requested , this paper handle status verification that break up inspection server by domain. This paper propose the method of real~time certificate status verification that solves network overload and communication bottleneck by requesting certification using really necessary Reduction information to certification status verification. And we confirm speed of certificate status verification $15\%$ faster than existing OCSP(Online Certificate Status Protocol) method by test.

Study on the Linear Static Structural Analysis Error of Helical Compression Springs (압축 원통 코일 스프링의 선형 정적 구조 해석 오차에 관한 연구)

  • Jang, Sang Chan;Kang, Jung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.237-244
    • /
    • 2016
  • Helical compression springs have been widely used in industries. The springs should be verified through experiment whether the inherent characteristics of the spring can be maintained during the manufacturing process. Considerable time and expense is spent in the manufacturing process. Therefore, in this study, the structural integrity evaluation of a spring was conducted using linear static structural analysis. Verification and comparison of the experimental data were carried out using a variety of international industrial standards with the intent to prove the validity of this study. The spring model did not consider coil ends. As a result of conducting the structural analysis, the quality of the mesh was improved and the time needed to create an analytical model was reduced. The study indicated that Poisson's ratio had little influence on the result of the structural analysis. Additionally, the possibility of verifying the structural integrity evaluation by structural analysis was confirmed.

Towards the Application of Safety Integrity Level for Improving Process Safety (공정안전향상을 위한 Safety Integrity Level의 적용 방향)

  • Kwon, Hyuck-Myun;Park, Hee-Chul;Chun, Young-Woo;Park, Jin-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • The concept of SIL is applied in the most of all standards relating to functional system safety. However there are problems for the people to apply SIL to their plants. as these standards don't include sufficient informations. In this regards, this paper will suggest the direction of SIL application and concept based on IEC 61508 and IEC 61511. A Safety Integrity Level(SIL) is the discrete level(one out of possible fours), corresponding to a range of the probability of an E/E/PE (Electric/Electrical/Programmable Electrical) safety-related system satisfactorily performing the specific safety functions under all the stated conditions within a stated period of time. SIL can be divided into the target SIL(or required SIL) and the result SIL. The target SIL is determined by the risk analysis at the analysis phase of safety lifecycle and the result SIL is calculated during SIL verification at the realization phase of safety lifecycle. The target SIL is determined by the risk analysis like LOPA(Layer Of Protection Analysis), Risk Graph, Risk Matrix and the result SIL is calculated by HFT(Hardware Fault Tolerance), SFF(Safe Failure Fraction) and PFDavg(average Probability of dangerous Failure on Demand). SIL is applied to various areas such as process safety, machinery(road vehicles, railway application, rotating equipment, etc), nuclear sector which functional safety is applied. The functional safety is the part of the overall safety relating to the EUC and the EUC control system that depends on the correct functioning of the E/E/PE safety-related systems and other risk reduction measures. SIL is applied only to the functional safety of SIS(Safety Instrumented System) in safety. EUC is the abbreviation of Equipment Under Control and is the equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities.

Verification of Structural Integrity for Cylindrical Subsonic Vehicle (원통형 아음속 비행체 구조 건전성 확인)

  • Choi, Youn Gyu;Noh, Kyung-Ho;Gil, Geun Suk;Jeon, Jong Geun;Baek, Joo Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • In this paper, the structural integrity for a cylindrical vehicle in subsonic environments is verified. In order to confirm static structural safety for the cylindrical vehicle in extreme maneuver condition, the structure analysis and full-scale static structure test are carried out. The commercial finite element codes, MSC. Patran/Nastran is used for numerical simulation. The full-scale static structure test equipment consists of the counterbalance system, loading system and data acquisition system. Besides, the dynamic characteristics for the cylindrical vehicle are reviewed by performing an impact hammer test.