• Title/Summary/Keyword: Integrated-Flight Simulation

Search Result 59, Processing Time 0.023 seconds

Development of a UAV Flight Control System Using a Low Cost GPS/IMU (저가형 GPS/IMU를 이용한 UAV 비행 제어 시스템 개발)

  • Koo, Won-Mo;Chun, Se-Bum;Won, Dae-Hee;Kang, Tae-Sam;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.502-510
    • /
    • 2008
  • UAVs(Unmanned Aerial Vehicles) have many applications in military and commercial areas. The flight control system of UAVs is more important than manned aircraft's because the mission of UAVs must be operated without a human pilot. But very heavy and expensive navigation system makes it difficult to develop UAV flight control system. In this research, GPS/IMU integrated navigation filter was developed for light weight/low cost flight control system of small UAVs. With this navigation filter, full flight control system which has real time operating capability has been developed. The performance of the flight control system is basically checked by HILSIM (Hardware In the Loop SIMulation). Finally, the flight control system is verified by showing performance test result under real flight environment.

A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Low Altitude (공기정보 오차에 의한 저고도 초음속 영역에서의 민감도 해석에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kim, Seong-Youl;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.80-87
    • /
    • 2005
  • T-50 supersonic jet trainer aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as altitude, VCAS(Calibrated Airspeed) and Angle of Attack from IMFP(Integrated Multi-Function Probe). IMFP sensors information have triplex structure using three IMFP sensors. Air-data selection logic is mid-value selection in three information from three IMFP sensors in order to have more reliability. From supersonic flight test at high altitude, air-data information is dropped simultaneously because of supersonic shock wave effect. This error information may affect to aircraft stability and safety in supersonic area at low altitude. This paper propose that sensitivity analysis and HQS(Handling Quality Simulator) pilot simulation in order to analyze flight stability and controllability in supersonic area at low altitude when these information is applied to flight control law.

Parameter Identification and Simulation of Light Aircraft Based on Flight Test (비행시험을 통한 경항공기의 매개변수 확정과 시뮬레이션)

  • 황명신;이정훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.237-247
    • /
    • 1999
  • Flight parameters of a light aircraft in normal category named ChangGong-91 we identified from flight tests. Modified Maximum Likelihood Estimation (MMLE) is used to produce aerodynamic coefficients, stability and control derivatives. A Flight Training Device (FTD) has been developed based on the identified flight parameters. Flat earth, rigid body, and standard atmosphere are assumed in the FTD model. Euler angles are adapted for rotational state variables to reduce computational load. Variations in flight Mach number and Reynolds number are assumed to be negligible. Body, stability and inertial axes allow 6 second-order linear differential equations for translational and rotational motions. The equations of motion are integrated with respect to time, resulting in good agreements with flight tests.

  • PDF

The NF-l6D VISTA Simulation System

  • Siouris, George M.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.114-123
    • /
    • 2002
  • Called VISTA (Variable-stability In-flight Simulator Test Aircraft), the one-of-a-kind NF-l6D has a simulation system that can mimic several aircraft. Though housed in an F-l6 Fighting Falcon airframe, VISTA can also act like the F-15 Eagle or the Navy's F-14 Tomcat. More importantly, such flexibility allows for improved training and consolidation of some sorties. Consequently USAF Test Pilot School students will have an opportunity to learn how to test future integrated cockpits. In this paper we will use the multiple model adaptive estimation (MMAE) and the multiple model adaptive controller (MMAC) techniques to model the aircraft's flight control system containing the longitudinal and lateral-directional axes. Single and dual actuator and sensor failures will also be included in the simulation. White Gaussian noise will be included to simulate the effects of atmospheric disturbances.

Airworthiness Case Study for the Tactical UAV's Flight Control System (전술급 무인항공기 비행제어시스템의 감항인증 사례연구)

  • Choi, Seung Kie;Moon, Jung Ho;Ko, Joon Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • This paper presents the case study of the airworthiness certification for the flight control system of tactical UAV. Airworthiness regulations for flight characteristics and design and construction based on the STANAG 4671 are selected, and safety assessment is performed. Stall protection on wing level and turning flight criteria, and flap interconnection system failures were analyzed and applied to the flight control system design. The Hardware-in-the-loop simulation including math model, integrated system verification and validation test and failure mode and effects test were also performed and they are used to validate the means of compliance of the proposed airworthiness.

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

Distributed and Real-time Integrated Simulation System on Avionics

  • Zhou, Yaoming;Liu, Yaolong;Li, Shaowei;Jia, Yuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.574-578
    • /
    • 2017
  • In order to achieve iterative design in early R&D period, a Distributed and Real-time Integrated Simulation System for avionics based on a Model-Based Systems Engineering (MBSE) method is proposed. The proposed simulation system includes driver, simulation model, monitor, flight visual model and aircraft external model.The effect of this simulation system in iterative design and system verification is testified by several use cases. The result shows that the simulation system, which can play an important role in iterative design and system verification, can reduce project costs and shorten the entire R&D period.

HILS Test for the Small Aircraft Autopilot (소형항공기용 Autopilot HILS 시험)

  • Lee, Jang-Ho;Kim, Eung-Tai;Seong, Ki-Jeong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.172-178
    • /
    • 2009
  • Recently, autopilot is essential to reduce pilot's workload and increase flight safety. Avionics system of the small aircraft also has progressively adopted centralized multi-processor and multi-process computing architectures similar to the integrated modular avionics of B-777. It is increased more and more that importance of the flight control system. In this paper, the performance of the autopilot for the small aircraft has been verified with Hardware-In-the-Loop Simulation(HILS). Also, the autopilot algorithm that is operated in the Flight Control Computer(FCC) for the Fly by Wire(FBW) was verified with PILS and compared with the HILS results for the several commercial autopilots.

  • PDF

Application of Human Machine Interface and Augmented Reality Technology to Flight Operation (인간-기계 인터페이스 및 증강현실 기술의 항공운항 분야 적용)

  • Park, Hyeong Uk;Chung, Joon;Chang, Jo Won;Joo, Seonghyeon;Hwang, Young Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.54-69
    • /
    • 2019
  • The primary objective of this paper is to introduce the application of Human-Machine Interface (HMI) and Augmented Reality (AR) technologies in flight operations. These include: self-check-in, baggage handling, airport security and surveillance, airport operations monitoring, In-Flight Entertainment and Connectivity (IFEC), cockpit design, and cabin crew support. This paper investigates the application status and development trends of HMI and AR technologies for airports and aircraft. These technologies can provide more efficient in-flight passenger service and experience by using AR devices. This paper also discusses the developments such as; the Integrated Control Application (ICA) for the IFEC interface, AR flight simulation training program using the fixed-based simulator, and the AR aircraft cabin interior concept test program. These applications present how HMI and AR techniques can be utilized in actual flight operations. The developed programs in this paper can be applied to their purpose within aircraft interiors and services to enhance efficiency, comfort, and experience.

Fault tolerant control for remotely piloted vehicle (원격조종 비행체의 이상허용 제어)

  • Kim, Dae-Woo;Son, Won-Ki;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.683-690
    • /
    • 1999
  • This paper deals with a fault-tolerant control method for robust control of RPV(Remotely Piloted Vehicle). To design the flight control system, the 6-DOF simulation program has been developed based on the dynamic model of RPV. A robust fault detection and diagnosis method proposed by Kwon et al. [8]-[10] is adopted to detect the actuator fault of RPV and to make the controller reconfiguration. The Hoo control method is applied to the flight control system. An integrated simulation for performance evaluation of the fault-tolerat\nt control system designed is performed via 6 DOF simulation and shows that the control system works even under the actuator fault.

  • PDF