• Title/Summary/Keyword: Integrated science education

Search Result 807, Processing Time 0.053 seconds

Three Teaching-Learning Plans for Integrated Science Teaching of 'Energy' Applying Knowledge-, Social Problem-, and Individual Interest-Centered Approaches (지식내용, 사회문제, 개인흥미 중심의 통합과학교육 접근법을 적용한 '에너지' 주제의 교수.학습 방안 개발(II))

  • Lee, Mi-Hye;Son, Yeon-A;Young, Donald B.;Choi, Don-Hyung
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.2
    • /
    • pp.357-384
    • /
    • 2001
  • In this paper, we described practical teaching-learning plans based on three different theoretical approaches to Integrated Science Education (ISE): a knowledge centered ISE, a social problem centered ISE, and an individual interest centered ISE. We believe that science teachers can understand integrated science education through this paper and they are able to apply simultaneously our integrated science teaching materials to their real instruction in classroom. For this we developed integrated science teaching-learning plans for the topic of energy which has a integrated feature strongly among integrated science subject contents. These modules were based upon the teaching strategies of 'Energy' following each integrated directions organized in the previous paper (Three Strategies for Integrated Science Teaching of "Energy" Applying Knowledge, Social Problem, and Individual Interest Centered Approaches) and we applied instruction models fitting each features of integrated directions to the teaching strategies of 'Energy'. There is a concrete describing on the above three integrated science teaching-learning plans as follows. 1. For the knowledge centered integration, we selected the topic, 'Journey of Energy' and we tried to integrate the knowledge of physics, chemistry, biology, and earth science applying the instruction model of 'Free Discovery Learning' which is emphasized on concepts and inquiry. 2. For the social problem centered integration, we selected the topic, 'Future of Energy' to resolve the science-related social problems and we applied the instruction model of 'Project Learning' which is emphasized on learner's cognitive process to the topic. 3. For the individual interest centered integration, we selected the topic, 'Transformation of Energy' for the integration of science and individual interest and we applied the instruction model of 'Project Learning' centering learner's interest and concern. Based upon the above direction, we developed the integrated science teaching-learning plans as following steps. First, we organized 'Integrated Teaching-Learning Contents' according to the topics. Second, based upon the above organization, we designed 'Instructional procedures' to integrate within the topics. Third, in accordance with the above 'Instructional Procedures', we created 'Instructional Coaching Plan' that can be applied in the practical world of real classrooms. These plans can be used as models for the further development of integrated science instruction for teacher preparation, textbook development, and classroom learning.

  • PDF

The Impact of Integrating Engineering into Science Learning on Student's Conceptual Understandings of the Concept of Heat Transfer

  • Park, Mi-Sun;Nam, Youn-Kyeong;Moore, Tamara;Roehrig, Gillian
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.89-101
    • /
    • 2011
  • Science, Mathematics, Engineering, and Technology (STEM) integrated education has been spotlighted as a new approach for promoting students' conceptual understanding and supporting their future career in STEM field. There is increasing evidence of the positive impact of using a whole design process that can be an example of STEM integrated activities to improve students' conceptual understanding and problem solving skills. However, there is a lack of information on how teachers should accomplish science and engineering integration activities in their classroom and what process they should pay attention. To answer this question, we research the relationship between an design process and students' conceptual understanding using an engineering design activity, called 'Save the Penguins', and study on how each step in an engineering design process in this activity enhance students' conceptual knowledge in science. We found that testing their prototypes and discussing with their peers were the most important process for students to understand and apply science concept for their design, even though the whole engineering design process (demonstration about radiation, discussion about examples in our lives, and testing and reviewing their prototypes, and making final design) helps the students understand the scientific concepts.

Relationships between Piagetian Congnitive Modes and Integrated Science Process Skills for High School Students (고교생의 논리적사고력과 과학탐구 기능 사이의 상관관계에 관한 연구)

  • Lim, Cheong-Hwan;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.11 no.2
    • /
    • pp.23-30
    • /
    • 1991
  • The purpose of this study is to investigate the interrelationships on integrated science process skills and Piagetian cognitive modes for high school students according to the different cognitive reasoning levels. About 509 high school students were randomly selected for the samples of this study. They were identified as concrete, transitional and formal operational stage with the scores of GALT(Group Assessment of Logical Thinking) developed by Roadrangka, Yeaney and Padilla(1982), and TIPS II(Test of Integrated Process Skills) developed by Burns, Wise and Okey(1983). The result of this study were showed that about 11.8% of the samples were in the concrete operational stage and about 24.4% of the samples were in the transitional stage, while about 63.8% of them were in the formal operational stage. It was also found that the achivement scores of the science process skills increase in accordance with the cognitive reasoning levels. The value of the correlation coefficient between science process skills and cognitive reasoning abilities was 0.49, which was significant at the 0.05 level. This finding seems to support previous research that the student's cognitive reasoning abilities appeared to have influenced student's scores of the science process skills No differences to the logical reasoning ability between male and female students according to each cognitive level were found except formal operational stage.

  • PDF

Exploring Ways to Improve Integrated Science and Science Laboratory Experiments in Preparation for the 2022 Revised Curriculum (2022 개정 교육과정에 대비한 과학과 통합과학 및 과학탐구실험 교육과정 개선 방안 탐색)

  • Kwak, Youngsun;Shin, Youngjoon
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.143-155
    • /
    • 2021
  • The goal of this study is to examine the Integrated Science and Science Laboratory Experiments of the 2015 revised curriculum applied since 2018, and to explore ways to improve these two subjects in preparation for the 2022 revised curriculum. A survey was conducted by randomly sampling high schools across the country, with a total of 192 science teachers participating. In addition, 12 high school science teachers were selected as focus group, and in-depth interviews were conducted to investigate ways to restructure common science courses for the next curriculum. Main research results include that most schools were operated in 6~8 units for Integrated Science, and the teachers in charge of Integrated Science per class averaged 2~3 over the three years. For Science Laboratory Experiments, it has operated for a total of two semesters, one unit per semester, and it was found that several science teachers are in charge of Science Laboratory Experiments to fill the insufficient number of hours regardless of major. In the in-depth interview, science teachers argued that Integrated Science should be reduced and restructured by strengthening key competencies in preparation for the high school credit system. Based on the research results, ways to reorganize Integrated Science focused on big ideas, ways to construct common science courses based on fundamental science concepts that can guide elective courses, the necessity of career guidance through common science courses, and the necessity of strengthening teacher professionalism for teaching interdisciplinary and multidisciplinary subjects were suggested.

A Study of German Elementary Science-Related Classes and Its Implication for Korean Science Education: 1 st and 2nd Grade of Elementary School (독일 초등학교 저학년의 과학관련수업사례를 통한 우리나라 과학교육에의 시사점 : 초등학교 1, 2 학년을 중심으로)

  • 김은진
    • Journal of Korean Elementary Science Education
    • /
    • v.21 no.2
    • /
    • pp.171-186
    • /
    • 2002
  • This is a study on science related class(Object Lesson in Germany) of a German elementary school. The research methods were participant observation, content analysis of various learning materials. In this study, the themes and processes of the Object Lesson are analyzed from the 1st grade to 1st semester of 2nd grade in B-G Schule at Goettingen. German Object Lesson(GOL) is performed as integrated education. It is started with experientially familiar materials and proceeded to deeper contents with special knowledges. The students have lots of time to play with friends, to do what they want, to think about others and etc. in GOL. They don't teach their students many science knowledges but inquirying methods to make their own knowledges. From this analysis results, the implications for Korean science education are to be described. The implications are as follows; We might make our science class be integrated one, especially in elementary science course, to develop several familiar materials, to give student direct experiences, to teach inquirying methods for making students' own science knowledges. And all of the adults included national authorities, economic companies, social parties, several specialists, should give supplies to school science class and have responsibilities on education

  • PDF

A Study of Development and Implementation of Teaching-Learning Materials for Integrated Education of Mathematics and Biological Science - Focused on Probability in Calculus and Basic Statistics Curriculum - (수학과 생명과학 통합 교수-학습 자료 개발 및 적용 -미적분과 통계 기본의 확률의 뜻과 활용 단원을 중심으로-)

  • Shin, Bo Mi;Ju, Eun Hwa
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.629-656
    • /
    • 2014
  • This study developed teaching and learning materials for an integrated education program of probability and genetics in the light of connections between mathematics and biological science. It also analysed characteristics of high school students' mathematical activities which appeared while the students took part in lessons where the developed materials were contributed in order to teach them. To achieve the aim, this study firstly specified five details for the development of the materials based on the results of previous research and extracted contents of probability and genetics which had the possibility of being taught in the integrated education program by examining the text books. After embodying the teaching materials according to the five details and the extracted contents, the researchers implemented 10 lessons by using the materials. This study elaborated some implications for a succeeding integrated education of mathematics and biological science in term of anlaysis results of features from the students' mathematical understanding and attitudes emerging in the lessons.

  • PDF

Trend Analysis of Curriculum Application Status of 2015 Revised Integrated Science and Scientific Laboratory Experiment Curriculum (2015 개정 통합과학과 과학탐구실험 교육과정의 2차 년도 적용 현황 추이 분석)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.53-63
    • /
    • 2020
  • The purpose of this study is to analyze the current status of the second year of application of Integrated Science and Science Laboratory Experiments, which are common courses of high school, and to explore suggestions for curriculum development in the future. To this end, the results of the survey of a total of 244 science-core and general high schools were compared with the survey result of 2018 school year. In addition, in-depth interviews were conducted with nine science teachers of the focus group to discuss the current state of curriculum implementation. According to the results, as in the first year, most of the Integrated Science courses were implemented in 6-8 units, and in most schools the number of teachers in charge of Integrated Science per class were 3-4. In the teacher's focus group interview, teachers insisted that Integrated Science requires integrated teaching approaches and is good for generating students' interest, but it is difficult to implement process-based assessment due to issues such as ensuring fairness of assessment. Most of Science Laboratory Experiments courses were implemented in two semesters, one unit per semester, and there was little link between Integrated Science and Science Laboratory Experiments because of the different teaching staff. The school life record entry method of Science Laboratory Experiments has been changed to criterion-based assessment starting in 2019, so students' satisfaction or flow of classes is much better than expected, and teachers can teach without burden. Based on the research results, ways to support the settlement of Integrated Science and Science Laboratory Experiments as common subjects, and ways to improve those subjects in the next curriculum revision were suggested.

Analysis of Science Educational Contents of Singapore, Canada and US Focused on the Integrated Concepts (통합개념을 중심으로 한 싱가포르, 캐나다와 미국의 과학교육과정 내용 요소 분석)

  • Lee, Yoonha;Yoon, Heojeong;Song, Joo-Yeon;Bang, Dami
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.1
    • /
    • pp.21-32
    • /
    • 2014
  • The feasibility of integrated concepts as a key element in designing integrated science curriculum has been investigated by analysing science contents included in performance expectations stated at different grades. The science curriculum of Singapore and the state of Ontario in Canada, and next generation of science standard (NGSS) were selected. Each of them presents theme, fundamental concepts, and crosscutting concepts, which has the characteristics of integrated concepts proposed in the study. Analysis showed that theme, fundamental concepts, and crosscutting concepts were influenced by the characteristics of each curriculum. In addition, science contents related to integrated concepts at different grades varied with the nature of integrated concepts. Based on results, some suggestions were made. First, the total number of integrated concepts should be considered for designing integrated curriculum. Second, the nature of integrated concepts and science contents associated with the integrated concepts should be considered. The integrated concepts should be vast and deep enough in the meaning to contain various content knowledge of different science domains. Third, it should be considered that how the integrated concepts have to be presented at different grades.