• Title/Summary/Keyword: Integrated river basin management

Search Result 73, Processing Time 0.024 seconds

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR INTEGRATED RIVER BASIN WATER MANAGEMENT IN KOREA

  • Shim Soon-Do;Shim Kyu-Cheoul
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.157-176
    • /
    • 2004
  • This research presents a prototype development and implementation of Decision Support System (DSS) for integrated river basin water management for the flood control. The DSS consists of Relational Database Management System, Hydrologic Data Monitoring System, Spatial Analysis Module, Spatial and Temporal Analysis for Rainfall Event Tool, Flood Forecasting Module, Real-Time Operation of Multi Reservoir System, and Dialog Module with Graphical User Interface and Graphic Display Systems. The developed DSS provides an automated process of alternative evaluation and selection within a flexible, fully integrated, interactive, centered relational database management system in a user-friendly computer environment. The river basin decision-maker for the flood control should expect that she or he could manage the flood events more effectively by fully grasping the hydrologic situation throughout the basin.

  • PDF

Water Resources Planning for the 2S River Basin in Viet Nam

  • Ko, Ick Hwan;Choi, Byung-Man;Kim, Jeong-kon;Pi, Wan-Seop;Shin, Jae-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.78-78
    • /
    • 2020
  • The Se San and Srepok river basins (2S) are the two major tributaries of the Mekong River, both of which originate in the territory of Viet Nam and flow to Cambodia to meet at Stung treng with the Sekong river (originating in Lao PDR) to form the 3S river basin before joining the Mekong mainstream. In the territory of Viet Nam, the 2S river basins are located in the Central Highlands including 5 provinces, arranged by geographical location from north to south namely Kon Tum, Gia Lai, Dak Lak, Dak Nong and Lam Dong. This is a region with a very important strategic position in terms of economy, politics and defense for the whole country with many potential advantages for economic development. However, the limited and vulnerable basin water resources are under the pressure of socio-economic development in line with increasing water demands for various sectors. In order to overcome the water management challenges, a long-term water resources planning has conducted to support the 2S River Basin Committee (RBC) in effective planning and operation as part of the WB Mekong-Integrated Water Resources Management (IWRM) Project. This paper introduces the outline and progress of the river basin planning using analytical DSS toolkits to analyze, evaluate and formulate the planning options.

  • PDF

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.

EU Water Framework Directive-River Basin Management Planning in Ireland

  • Earle, R.;Almeida, G.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.105-109
    • /
    • 2010
  • The European Union (EU) Water Framework Directive (WFD) (2000/60/EC) was transposed into Irish law by Statutory Instrument Nos. 722 of 2003, 413 of 2005 and 218 of 2009, which set out a new strategy and process to protect and enhance Ireland's water resources and water-dependent ecosystems. The Directive requires a novel, holistic, integrated, and iterative process to address Ireland's natural waters based on a series of six-year planning cycles. Key success factors in implementing the Directive include an in-depth and balanced treatment of the ecological, economic, institutional and cultural aspects of river basin management planning. Introducing this visionary discipline for the management of sustainable water resources requires a solemn commitment to a new mindset and an overarching monitoring and management regime which hitherto has never been attempted in Ireland. The WFD must be implemented in conjunction with a myriad of complimentary directives and associated legislation, addressing such key related topics as flood/drought management, biodiversity protection, land use planning, and water/wastewater and diffuse pollution engineering and regulation. The critical steps identified for river basin management planning under the WFD include: 1) characterization and classification of water bodies (i.e., how healthy are Irish waters?), 2) definition of significant water pressures (e.g., agriculture, forestry, septic tanks), 3) enhancement of measures for designated protected areas, 4) establishment of objectives for all surface and ground waters, and 5) integrating these critical steps into a comprehensive and coherent river basin management plan and associated programme of measures. A parallel WFD implementation programme critically depends on an effective environmental management system (EMS) approach with a plan-do-check-act cycle applied to each of the evolving six-year plans. The proactive involvement of stakeholders and the general public is a key element of this EMS approach.

Financial Resources allocation criteria for Integrated River Basin Management (유역통합관리를 위한 재원분담방안 연구)

  • Kim, Chong-Won;Kim, Chang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.63-72
    • /
    • 2007
  • The main purpose of this study is that financial resources allocation criteria are examined closely between central government and local government as well as among local government in a river basin. Financial resources allocation principles reflecting water use, flood control, and water quality improvement are reviewed and derived two categories such as common factors and individual factors. The weights of each factor are assigned by analytical hierarchy process. The results of applying four river basins (Han river, Geum river, Nakdong river, Yeongsan-seumjin river) show that rational raising of financial resources are different according to the characteristics of each river basin. Findings are as follows: In case of Han river and Yeongsan Seumjin river, benefit principle and polluter pay principle by individual factors are more attractive than other Principles. Solvency principle by common factor is more acceptable than the other principles in Nakdong-river and Geum-river.

Runoff Characteristics using RRFS on Geum River Basin (RRFS에 의한 금강유역의 유출특성)

  • Maeng, Seung-Jin;Lee, Hyeon-Gyu;Hwang, Man-Ha;Koh, Ick-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.408-412
    • /
    • 2006
  • Growing needs for efficient management of water resources urge integrated management of whole basin. As one of the tools for supporting above tasks, this study aims to indicate a hydrologic model that can simulate the streamflow discharges at some control points located both upper and down stream of dams. For the development and utilization of non analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-Time Water Information System. The well-known SSARR model was selected for basis of continuous daily runoff model for forecasting short and long-term national river flows in this paper.

  • PDF

Plan for Flood Control Linked with Dam and River Basin (댐과 하천유역을 연계한 홍수 대응 방안 - 2020년 섬진강 홍수사상을 대상으로 -)

  • Kyong Oh Baek;Dong Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • In this study, a one-dimensional numerical model was constructed to propose a flood control plan linked with the dam and river basin for the flood events of the Seomjin River in 2020. The flood level reduction of the downstream river was tested based on a scenario operation of the Seomjingang Dam and was also analyzed when a storage pocket was newly constructed as one of the river basin measures. It was confirmed that Seomjingang Dam's flood control capacity would be increased if the flood limit level was drastically lowered from the current EL. 196.5 m to EL. 188.0 m. In addition, if the upper area of the (old) Geumgok Bridge (which suffered great damage due to the loss of the levee) is used as a storage pocket, it would be effective in preventing floods in the lower area of it. In the era of the climate crisis, more integrated flood management is needed and basic river management must be observed.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.