• Title/Summary/Keyword: Integrated navigation

Search Result 698, Processing Time 0.043 seconds

Development of Range Sensor Based Integrated Navigation System for Indoor Service Robots (실내용 서비스 로봇을 위한 거리 센서 기반의 통합 자율 주행 시스템 개발)

  • Kim Gunhee;Kim Munsang;Chung Woojin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.785-798
    • /
    • 2004
  • This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.

Implementation and Flight Test Performance Analysis of vSLAM Aided Integrated Navigation System for Rotary UAV (vSLAM 보조 통합항법시스템 구현 및 무인 회전익기를 이용한 비행시험 성능분석)

  • Yun, Suk-Chang;Lee, Byoung-Jin;Yun, Suk-Hwan;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.362-369
    • /
    • 2011
  • In this paper, vSLAM aided integrated navigation system is implemented and performance analysis of the system is completed via flight test. The system can suppress divergence of position error of INS only system by updating vSLAM correction information when temporary GPS signal outage occurs in bad radio condition. In the flight test, integrated hardware containing GPS, IMU and camera is loaded under RC electric helicopter. Performance of the integrated navigation system is verified by comparing estimated position of INS/vSLAM system with that of INS only system.

Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect (GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석)

  • Song, Jong-Hwa;Jee, Gyu-In;Jeong, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo is the Europe's global navigation satellite system corresponding to the GPS. The GIOVE-A test experiment has been finished and the second test satellite GIOVE-B will be launched soon. The integration of GPS and Galileo lead an increase of visible satellite number. We can obtain an improved navigation performance in signal blocked area such as urban or forest. GPS and Galileo have each time-coordinate system and use the different error model to calculate the navigation solution. In this paper, we studied on GPS and Galileo channel error model and time-coordinate system. Using this result, we implement the integrated navigation algorithm. In simulation, we analyzed the navigation error caused by time and coordinate disagreement and verified performance of integrated navigation algorithm in terms of visible satellite number, DOP(Dilution of Pression) and position error.

Performance Analysis of Integrated GNSS with GPS and QZSS (GPS와 QZSS 통합위성항법 성능 분석)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1031-1039
    • /
    • 2016
  • The Quasi-Zenith Satellite System(QZSS) is the Japanese satellite navigation system, which designs to increase the GPS system's visibility in the urban areas. The first satellite(Michibiki) was launched in 2010 and started to broadcast navigation signals. Therefore, the purpose of the research is to analyze the performance of GPS and QZSS based on the advantage of the integrated GNSS. Especially, the study has been processed in terms of improving satellite navigation parameters around Korean Peninsula. To do this, there have been the comprehensive analysis of the QZSS characteristics, the experimental test, and its statistical analysis for realizing advantage of GPS and QZSS. Through these systemic steps, it was recognized that the integrated GPS and QZSS has more reliable than GPS in case of not only limited visibility but also ordinary positioning. Additionally, the integrated GPS and QZSS would be very useful to improve the various navigation parameters around the peninsula.

DVL-RPM based Velocity Filter Design for a Performance Improvement Underwater Integrated Navigation System (수중운동체 복합항법 성능 향상을 위한 DVL/RPM 기반의 속도 필터 설계)

  • Yoo, Tae Suk;Yoon, Seon Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.774-781
    • /
    • 2013
  • The purpose of this paper is to design a DVL-RPM based VKF (Velocity Kalman Filter) design for a performance improvement underwater integrated navigation system. The proposed approach relies on a VKF, augmented by a altitude from Echo-sounder based switching architecture to yield robust performance, even when DVL (Doppler Velocity Log) exceeds the measurement range and the measured value is unable to be valid. The proposed approach relies on two parts: 1) Indirect feedback navigation Kalman filter design, 2) VKF design. To evaluate proposed method, we compare the results of the VKF aided navigation system with simulation result from a PINS (Pure Inertial Navigation System) and conventional INS-DVL method. Simulations illustrate the effectiveness of the underwater navigation system assisted by the additional DVL-RPM based VKF in underwater environment.

Framework and Technology of Integrated Ship-Shore Information System

  • Zhang, Ying-Jun;Dong, Fang;Zhang, Xiu-Guo;Zhu, Fei-Xiang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.163-166
    • /
    • 2004
  • Integrated Ship-Shore Information System makes use of advanced technology of marine mobile communication and extends the computer network of shipping company to ship. This system conveniently accomplishes the information exchange between company and ship, guarantees navigation safety and improves commercial performance. The framework of integrated ship-shore information system and the analysis of its function are provided in this paper. Meanwhile, the idea based on the specification of J2EE to build this system is put forward and the relevant technology is demonstrated.

  • PDF

Study on Standardization Method of non-Standard AtoN Management and Operation System (비표준 항로표지 관리운영시스템 표준화 방안 연구)

  • Park, In-Hwan;Kim, Hyung-Lae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.119-121
    • /
    • 2018
  • We intend to improve the navigation system integrated management system that is constructed and operated to meet the changes in marine traffic environment and prevent large-scale marine casualties and human casualties by applying the standard specification of integrated management system of marine traffic facilities in 2012. I t reuses the existing system resources and improves the operating software and standardizes the system installation to facilitate operation and maintenance.

  • PDF

Test and Integration of Location Sensors for Position Determination in a Pedestrian Navigation System

  • Retscher, Guenther;Thienelt, Michael
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.251-256
    • /
    • 2006
  • In the work package 'Integrated Positioning' of the research project NAVIO (Pedestrian Navigation Systems in Combined Indoor/Outdoor Environements) we are dealing with the navigation and guidance of visitors of our University. Thereby start points are public transport stops in the surroundings of the Vienna University of Technology and the user of the system should be guided to certain office rooms or persons. For the position determination of the user different location sensors are employed, i.e., for outdoor positioning GPS and dead reckoning sensors such as a digital compass and gyro for heading determination and accelerometers for the determination of the travelled distance as well as a barometric pressure sensor for altitude determination and for indoor areas location determination using WiFi fingerprinting. All sensors and positioning methods are combined and integrated using a Kalman filter approach. Then an optimal estimate of the current location of the user is obtained using the filter. To perform an adequate weighting of the sensors in the stochastic filter model, the sensor characteristics and their performance was investigated in several tests. The tests were performed in different environments either with free satellite visibility or in urban canyons as well as inside of buildings. The tests have shown that it is possible to determine the user's location continuously with the required precision and that the selected sensors provide a good performance and high reliability. Selected tests results and our approach will be presented in the paper.

  • PDF

Flight Test of GPS/INS Navigation System for Air Navigation (공중항법을 위한 GPS/INS 비행시험)

  • Yoo, C.S.;Ahn, I.K.;Lim, C.H.;Lee, S.J.;Ahn, I.K.;Nam, G.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.10 no.1
    • /
    • pp.35-44
    • /
    • 2002
  • Inertial Navigation System(INS) has been used in the field of air navigation for a long time but is not popular in general aviation due to high price. Recently low-price GPS is available but vulnerable to radio interference. As an alternative on these problems, GPS/INS integrated navigation system has been considered. GPS/INS is capable of implementing navigation with low-price inertial sensors but its accuracy is dependent upon how much drift of INS may be calibrated by using GPS. In order to apply GPS/INS to air navigation, it must be investigated how long drift of INS in case of no GPS aiding will be bounded within requirements for safe flight. From the above motivation, the flight test for GPS/INS navigation system was conducted in order to make sense its performance in air navigation and its result was shown.

  • PDF

Integrated Path Planning and Collision Avoidance for an Omni-directional Mobile Robot

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.210-217
    • /
    • 2010
  • This paper presents integrated path planning and collision avoidance for an omni-directional mobile robot. In this scheme, the autonomous mobile robot finds the shortest path by the descendent gradient of a navigation function to reach a goal. In doing so, the robot based on the proposed approach attempts to overcome some of the typical problems that may pose to the conventional robot navigation. In particular, this paper presents a set of analysis for an omni-directional mobile robot to avoid trapped situations for two representative scenarios: 1) Ushaped deep narrow obstacle and 2) narrow passage problem between two obstacles. The proposed navigation scheme eliminates the nonfeasible area for the two cases by the help of the descendent gradient of the navigation function and the characteristics of an omni-directional mobile robot. The simulation results show that the proposed navigation scheme can effectively construct a path-planning system in the capability of reaching a goal and avoiding obstacles despite possible trapped situations under uncertain world knowledge.