• Title/Summary/Keyword: Integrated navigation

Search Result 700, Processing Time 0.026 seconds

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu;To Thi Thu Ha;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.125-136
    • /
    • 2024
  • This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.

Velocity Aided Navigation Algorithm to Estimate Current Velocity Error (해조류 속도 오차 추정을 통한 속도보정항법 알고리즘)

  • Choi, Yun-Hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Inertial navigation system has navigation errors because of the error of inertial measurement unit (IMU) and misalignment over time. In order to solve this problem, aided navigation system is performed using global navigation satellite system (GNSS), speedometer, etc. The inertial navigation system equipped with underwater vehicle mainly uses speedometer and performed aided navigation because satellite signals do not pass through underwater. There are DVL, EM-Log, and RPM in the speedometer, and the sensors are applied according to the system environment. This paper describes velocity aided navigation using RPM of inertial navigation system operating in high speed and deep water environment. In addition, we proposes an algorithm to compensate the limit of RPM with straight direction and the current velocity error. There are results of monte-calo simulation to prove performance of the proposed algorithm.

An Integrated Modeling Methodology on the CIMS for Ship Production (조선 CIMS에서의 통합 모형화 방법론)

  • Hwang, Sung-Ryoung;Kim, Jae-Gyun;Moon, Chi-Ung;Jang, Gil-Sang
    • IE interfaces
    • /
    • v.13 no.1
    • /
    • pp.65-77
    • /
    • 2000
  • Nowadays, the modeling of systems have been enabled by various models and methodologies that are used for different purpose and perspectives upon the systems. The integrated modeling methodology that integrates these models and methodologies has become challenging issues in system integration such as CIM and PDM. The primary objective of this paper is to propose the comprehensive integrated modeling methodology that integrates the Extended IDEF0 function model, OOIDEF0 information model, navigation model, interface model, and organization model for an effective analysis and design of the CIMS for ship production. This methodology can be used for the integrated system, and cover the systems development life cycle in an integrated fashion. In order to prove the consistency and efficiency of the proposed methodology, the CIMS for ship production is modeled.

  • PDF

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

Heuristic Inference in the Expert System for Autonomous Navigation of AUV (AUV의 자율항행을 위한 전문가시스템에서의 휴리스틱 추론기법)

  • 이영일;김창민;김용기
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.155-159
    • /
    • 1999
  • 자율무인잠수정(AUV, Autonomous Underwater Vehicle)이 해저 속에서 주어진 임무(mission)를 수행하는데 있어 가장 먼저 선행되어야 하는 것은 목표점(Goal Position)까지 안전하고 빠르게 항행할 수 있는 자율 항행시스템(Autonomous Navigation System) 관련 기술의 개발이다. 이러한 시스템은 IPMS(Integrated Platform Management System)률 기반으로 하여 자율무인잠수정에 자율성을 부여하는 항행전문가시스템(Navigation Expert System)이 결합된 구조이다. 본 논문에서는 IPMS에 기반 한 자율항행시스템의 개념적 구조를 설계하고 항행전문가시스템의 추론방법으로서 퍼지관계곱(Fuzzy Relational Products) 기반 평가함수를 이용한 항행 휴리스틱탐색(navigation heuristic search) 기법을 제안한다.

  • PDF

Heuristic Inference in the Expert System for Autonomous Navigation of AUV (AUV의 자율항행을 위한 전문가시스템에서의 휴리스틱추론기법)

  • 이영일;김창민;김용기
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.155-159
    • /
    • 1999
  • 자율무인잠수정(AUV, Autonomous Underwater Vehicle)이 해저 속에서 주어진 임무(mission)를 수행하는데 있어 가장 먼저 선행되어야 하는 것은 목표점(Goal Position)까지 안전하고 빠르게 항행할 수 있는 자율항행시스템(Autonomous Navigation System) 관련 기술의 개발이다. 이러한 시스템은 IPMS(Integrated Platform Management System)를 기반으로 하여 자율무인잠수정에 자율성을 부여하는 항행전문가시스템(Navigation Expert System)이 결합된 구조이다. 본 논문에서는 IPMS 에 기반한 자율항행시스템의 개념적 구조를 설계하고 항행전문가시스템의 추론방법으로 퍼지관계곱(Fuzzy Relational Products) 기반 평가함수를 이용한 항행 휴리스틱탐색(navigation heuristic search) 기법을 제안한다.

  • PDF

A Study on Development of Visual Navigation System based on Neural Network Learning

  • Shin, Suk-Young;Lee, Jang-Hee;You, Yang-Jun;Kang, Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads without any specific marks such as painted guide line or tape. In this method the robot navigates with visual sensors, which uses visual information to navigate itself along the read. The Neural Network System was used to learn driving pattern and decide where to move. In this paper, I will present a vision-based process for AMR(Autonomous Mobile Robot) that is able to navigate on the indoor read with simple computation. We used a single USB-type web camera to construct smaller and cheaper navigation system instead of expensive CCD camera.

Study and Implementation on Compensation of Step Jump Errors and Integrated Filter in the INS/GPS System

  • Hong, Woon-Seon;Choi, Sang-Wook;Park, Heung-Won;Kim, Chen-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.114.3-114
    • /
    • 2001
  • The pure navigation system using Inertial Navigation Unit(INU) which has very accurate short term stabilities but not long term gives rise to position errors propotional to time. On the contrary, Global Positioning System(GPS) which is bounded its errors to some fixed ranges shows higher accuracy in the long term, and lower accuracy in the short term than that of INS. Recently the integration of these two systems is one of the main topic in the field of navigation system. In this thesis, the implementation of kalman filter on the real time navigation computer and step jump error compensation method is suggested.

  • PDF

Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • This study analyzed positioning accuracy of the multi-differential global navigation satellite system (DGNSS) algorithm that integrated GPS, GLONASS, and BDS. Prior to the analysis, four sites of which satellite observation environment was different were selected, and satellite observation environments for each site were analyzed. The analysis results of the algorithm performance at each of the survey points showed that high positioning performance was obtained by using DGPS only without integration of satellite navigation systems in the open sky environment but the positioning performance of multi-DGNSS became higher as the satellite observation environments degraded. The comparison results of improved positioning performance of the multi-DGNSS at the poor reception environment compared to differential global positioning system (DGPS) positioning results showed that horizontal accuracy was improved by 78% and vertical accuracy was improved by 65% approximately.