• Title/Summary/Keyword: Integrated design optimization framework

Search Result 46, Processing Time 0.025 seconds

Integrated Optimization Design of Carbon Fiber Composite Framework for Small Lightweight Space Camera

  • Yang, Shuai;Sha, Wei;Chen, Changzheng;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2016
  • A Carbon Fiber Composite (CFC) framework was designed for a small lightweight space camera. According to the distribution characteristics of each optical element in the optical system, CFC (M40J) was chosen to accomplish the design of the framework. TC4 embedded parts were used to solve the low accuracy of the CFC framework interface problem. An integrated optimization method and the optimization strategy which combined a genetic global optimization algorithm with a downhill simplex local optimization algorithm were adopted to optimize the structure parameters of the framework. After optimization, the total weight of the CFC framework and the TC4 embedded parts is 15.6 kg, accounting for only 18.4% that of the camera. The first order frequency of the camera reaches 104.8 Hz. Finally, a mechanical environment test was performed, and the result demonstrates that the first order frequency of the camera is 102 Hz, which is consistent with the simulation result. It further verifies the rationality and correctness of the optimization result. The integrated optimization method mentioned in this paper can be applied to the structure design of other space cameras, which can greatly improve the structure design efficiency.

Shape Optimization of Shell Surfaces Based on Linkage Framework betweenGeometric Modeling and Finite Element Analysis (유한요소해석과 기하학적 모델링의 연동에 기초한 쉘 곡면의 형상 최적 설계)

  • Kim, Hyon-Cheol;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1328-1333
    • /
    • 2003
  • In the present study, an integrated framework of geometric modeling, analysis, and design optimization is proposed. Geometric modeling is based on B-spline surface representation. Geometrically-exact shell finite element is implemented in analysis module. Control points of the surface are selected as design variables for optimization, which can make the interaction easier between analysis and surface representation. Sequential linear programming(SLP) is adopted for the shape optimization of surfaces. For the computation of shape sensitivities, semi-analytical method is used. The developed integrated framework should serve as a powerful tool for the geometric modeling, analysis, and shape design of surfaces.

  • PDF

Data Server Oriented Computing Infrastructure for Process Integration and Multidisciplinary Design Optimization (다분야통합최적설계를 위한 데이터 서버 중심의 컴퓨팅 기반구조)

  • 홍은지;이세정;이재호;김승민
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.231-242
    • /
    • 2003
  • Multidisciplinary Design Optimization (MDO) is an optimization technique considering simultaneously multiple disciplines such as dynamics, mechanics, structural analysis, thermal and fluid analysis and electromagnetic analysis. A software system enabling multidisciplinary design optimization is called MDO framework. An MDO framework provides an integrated and automated design environment that increases product quality and reliability, and decreases design cycle time and cost. The MDO framework also works as a common collaborative workspace for design experts on multiple disciplines. In this paper, we present the architecture for an MDO framework along with the requirement analysis for the framework. The requirement analysis has been performed through interviews of design experts in industry and thus we claim that it reflects the real needs in industry. The requirements include integrated design environment, friendly user interface, highly extensible open architecture, distributed design environment, application program interface, and efficient data management to handle massive design data. The resultant MDO framework is datasever-oriented and designed around a centralized data server for extensible and effective data exchange in a distributed design environment among multiple design tools and software.

Development of Missile Design Computer Framework for the Multidisciplinary Optimization (유도무기 통합최적화설계를 위한 전산프레임워크 개발연구)

  • Kim Woo-Hyun;Lee Seung-Jin;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.307-314
    • /
    • 2006
  • Missile system. which requires high speed/high maneuverability is getting more important as a defensive weapon system. Integrated design environment which includes all related resources during the missile development process, is a very useful development tool, Therefor the design framework can perform the operation analysis and utilize design information for the efficient missile design. For this purpose, various analysis computer codes under heterogeneous platforms and operating systems, the database, the optimization module, and Ideas a commercial CAD are integrated using distributed. middleware. and the complicated GUI design has been made for the specific missile system design. Under the various constraint, maximize missile range and loadfactor with missile design computer framework.

  • PDF

UAV Performance Improvement Using Integrated Analysis and Design Optimization Technology (통합 해석 및 설계 최적화 기술을 이용한 무인기 성능 향상 연구)

  • Kim, Jimin;Nguyen, Nhu Van;Shu, Jung-Il;Maxim, Tyan;Lee, Jae-Woo;Kim, Sangho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • This paper describes the design optimization of Unmanned Aerial Vehicles(UAVs). An optimization framework has been developed and implemented for the conceptual design of UAVs. An integrated design analysis program was developed with several analysis modules such as propulsion, performance, mission, weight, and stability and control. A UAV configuration design optimization was performed by implementing the integrated analysis to enhance the endurance of UAVs. A SQP optimizer was utilized to build an optimization module for this program and sensitivity analysis was performed to determine the trends of shape variables for developing optimization objective. In conclusion, the results indicate that the resulting optimized UAVs configurations show performance improvements over the baseline design and reliable analysis results.

Integrated Design System using MDO and Approximation Technique (MDO 통합 설계 시스템을 위한 근사기법의 활용)

  • 양영순;박창규;장범선;유원선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.275-283
    • /
    • 2004
  • The paper describes the integrated design system using MDO and approximation technique. In MDO related research, final target is an integrated and automated MDO framework systems. However, in order to construct the integrated design system, the prerequisite condition is how much save computational cost because of iterative process in optimization design and lots of data information in CAD/CAE integration. Therefore, this paper presents that an efficient approximation method, Adaptive Approximation, is a competent strategy via MDO framework systems.

  • PDF

Shape Optimization of Shell Surfaces Based on Linkage Framework between B-spline Modeling and Finite Element Analysis (유한요소해석과 B-스플라인 모델링의 연동에 기초한 쉘 곡면의 형상 최적 설계)

  • 김현철;노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.169-176
    • /
    • 2003
  • In the present study, a shape design optimization scheme in shell structures is implemented based on the integrated framework of geometric modeling and analysis. The common representation of B-spline surface patch is used for geometric modeling. A geometrically-exact shell finite element is implemented. Control points or the surface are employed as design variables. In the computation of shape sensitivity, semi-analytical method is employed. Sequential linear programming is applied to the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool to design and analysis of surfaces.

  • PDF

Development of Framework of Linkage between Geometric Modeling and Finite Element Analysis for Shape Optimization of Shell Surfaces (쉘 곡면 형상의 최적 설계를 위한 유한요소해석과 기하학적 모델링의 연동)

  • Kim,Hyeon-Cheol;No,Hui-Yeol;Jo,Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.27-35
    • /
    • 2003
  • Geometric modeling tool and analysis tool of shell surface have been developed in the different environments and purposes. Thus they cannot be naturally fitted to each other for the integrated design and analysis. In the present study, an integrated framework of geometric modeling, analysis, and design optimization is proposed. It is based on the common representation of B-spline surface patch. In the analysis module, a geometrically-exact shell finite element is implemented. In shape optimization module, control points of the surface are selected as design variables. For the computation of shape sensitivities, semi-analytical method is used. Sequential linear programming(SLP) is adopted for the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool for the geometric modeling, analysis, and shape design of surfaces.

Analysis of development methods for a Multidisciplinary Design Optimization framework (다분야 통합 최적설계 프레임워크 구축방법 분석)

  • Lee, Ho-Jun;Lee, Jae-Woo;Moon, Chang-Joo;Kim, Sang-Ho;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.947-953
    • /
    • 2008
  • MDO(Multidisciplinary Design and Optimization) framework can be an integrated environment or a system, which is for synthetic and simultaneous analysis and design optimization in various design fields of aerospace systems. MDO framework has to efficiently use and integrate distributed resources such as various analysis codes, optimization codes, CAD tools, DBMS and etc. in heterogeneous environment, and to provide graphical and easy-to-use user interfaces. Also, its development method can be changed by design objects and development environment. In this paper, we classify MDO frameworks into three types according to the development environments: Single PC-based, PLinda-based and Web Services-based MDO framework. And, we compare and analyze these frameworks.

Missile Configuration Design and Optimization Using MDO Framework (MDO 프레임워크를 이용한 유도무기 최적 형상 설계)

  • Lee Seung-Jin;Kim Woo-Hyun;Lee Jae-Woo;Lee Chang-Hyuk;Kim Sang-Ho;Hwang Sung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.343-346
    • /
    • 2006
  • In this study, optimization process is constructed for developing missile MDO framework. The analysis tools which are integrated in the missile MDO framework and data flow between analysis tools are investigated. Using analyzed results, the optimal design scenario is constructed. Then to verify optimal design scenario, missile design problem is made and performed.

  • PDF