• Title/Summary/Keyword: Integrated Solar Cell

Search Result 96, Processing Time 0.035 seconds

Thermal Process Optimization of Pb-free Ag-paste and Evaluation of Electrical Properties in Mono-Si Solar Cell (단결정 Si 태양전지 적용을 위해 제조된 무연 은 페이스트의 열 공정 최적화 및 전기적 특성 평가)

  • Jeong, Ji-Hyun;Kim, Sung-Jin;Son, Chang-Rok;Ur, Soon-Chul;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.844-849
    • /
    • 2011
  • Two kind of Ag-pastes were prepared for integrating the bulk Si solar cell. One is the Ag-paste with Pb-based glass frit and the other is that with Bi-based glass frit. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 2 wt% additives. After fabricating the Ag-pastes, they was coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. The solar cell efficiency was 17.6% in the case of the Pb-based Ag-paste. However that was 16.2% in the solar cell integrated with the Bi-based Ag-paste. The lower performance in Bi-based Ag-paste was caused by the higher series resistance and the lower shunt resistance in comparison with the Pb-based Ag-paste.

A Study on the Optimization of Color Module BIPV Architectural Design Using BIM - Based on the data of Seoul surveyed solar radiation - (BIM을 활용한 컬러모듈 BIPV 건축 설계 최적화 방안 연구 - 서울 지역 실증 일사량 데이터 중심으로 -)

  • Jeon, Hyun-Woo;Yoon, Hea-Kyung;Park, Suh-Jun
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Currently, BIPV (Building Integrated Photovoltaic) design technology lacks analysis function at the planning stage, and there is a lack of understanding and reliability of BIPV design method and system for building designers. To design and consider various building integrated solar design alternatives, the color of building integrated solar is often monotonous or does not match the design direction of the building. In this study, architectural designers can select various color modules in the planning and design process of the building and analyze the characteristics of color module solar cells and compare and analyze the actual solar radiation and predicted solar radiation in Republic ofKorea Seoul to reduce the confusion of design methods. By building a BIM design integrated system that can prove the quality of the building and analyze the shading analysis and power generation performance architecturally, it can improve the reliability of color module solar cell applicability that can express aesthetics in buildings and the predicted solar power generation capacity of each region. In the initial design stage, based on the empirical data of the BIPV system, it is possible to analyze the power generation performance for each installation angle and installation direction by analyzing the surrounding environment and the installation area, and accurately determine the appropriateness of the design accordingly.

A Study on Probabilistic Reliability Evaluation of Power System Considering Solar Cell Generators (태양광발전원(太陽光發電原)을 고려한 전력계통(電力系統)의 확률논적(確率論的)인 신뢰도(信賴度) 평가(評價)에 관한 연구(硏究))

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.486-495
    • /
    • 2009
  • This paper proposes a new methodology on reliability evaluation of a power system including solar cell generators (SCG). The SCGs using renewable energy resource such as solar radiation(SR) should be modeled as multi-state operational model because the uncertainty of the resource supply may occur an effect as same as the forced outage of generator in viewpoint of adequacy reliability of system. While a two-state model is well suited for modeling conventional generators, a multi-state model is needed to model the SCGs due to the random variation of solar radiation. This makes the method of calculating reliability evaluation indices of the SCG different from the conventional generator. After identifying the typical pattern of the SR probability distribution function(pdf) from SR actual data, this paper describes modelling, methodology and details process for reliability evaluation of the solar cell generators integrated with power system. Two test results indicate the viability of the proposed method.

실리콘 박막 태양전지를 위한 CdSe계 양자점 광변환구조체

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.135.2-135.2
    • /
    • 2014
  • Photon conversion technology for thin film solar cells is reviewed. The high-energy photons which are hardly absorbed in solar cells can be transformed the low energy photon by the photon conversion process such as down conversion or down shift, which can improve the solar cell efficiency over the material limit. CdSe-based quantum dot materials commonly used in LED can be used as the photon conversion layer for Si thin film solar cells. The photon conversion structure of CdSe-based quantum dot for Si thin film solar cells will be presented and the pros and cons for the Si thin film solar cells integrated with the photon conversion layers will be discussed.

  • PDF

Cooling System Control of Building Integrated Photovoltaic Generation Using Micro-controller (마이크로 컨트롤러를 이용한 BIPV 발전의 냉각시스템 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1120-1121
    • /
    • 2008
  • This paper is proposed cooling system of BIPV(Building Integrated Photovoltaic) by micro-controller. The output power of PV generation system is not systematically tracked and influenced by various factors; solar irradiance, solar cell temperature. The temperature of solar module should be minimized to increase electrical output. Therefore, it is proposed that micro-controller cools to decrease temperature of solar module using thermoelement. The validity of this paper is proved by comparing solar module temperature of cooling system and un-cooling system.

  • PDF

Recent Progress and Prospect of Luminescent Solar Concentrator (발광형 태양광 집광기 최신 연구 동향)

  • Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

Fabrication of Shingled Design Solar Module with Controllable Horizontal and Vertical Width (가로세로 폭의 제어가 가능한 슁글드 디자인 태양광 모듈 제조)

  • Min-Joon Park;Minseob Kim;Eunbi Lee;Yu-Jin Kim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.75-78
    • /
    • 2023
  • Recently, the installation of photovoltaic modules in urban areas has been increasing. In particular, the demand for solar modules installed in a limited space is increasing. However, since the crystalline silicon solar module's size is proportional to the solar cell's size, it is difficult to manufacture a module that can be installed in a limited area. In this study, we fabricated a solar module with a shingled design that can control horizontal and vertical width using a bi-directional laser scribing method. We fabricated a string cell with a width of 1/5 compared to the existing shingled design string cells using a bi-directional laser scribing method, and we fabricated a solar module by connecting three strings in parallel. Finally, we achieved a conversion power of 5.521 W at a 103 mm × 320 mm area.

Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications

  • Pejjai, Babu;Reddy, Vasudeva Reddy Minnam;Seku, Kondaiah;Cho, Haeyun;Pallavolu, Mohan Reddy;Le, Trang Thi Thuy;Jeong, Dong-seob;Kotte, Tulasi Ramakrishna Reddy;Park, Chinho
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2430-2441
    • /
    • 2018
  • Selenium (Se)-rich binary Cu-Se and In-Se nanoparticles (NPs) were synthesized by a modified heat-up method at low temperature ($110^{\circ}C$) using the gum exudates from a cherry blossom tree. Coating of CISe absorber layer was carried out using Se-rich binary Cu-Se and In-Se NPs ink without the use of any external binder. Our results indicated that the gum used in the synthesis played beneficial roles such as reducing and capping agent. In addition, the gum also served as a natural binder in the coating of CISe absorber layer. The CISe absorber layer was integrated into the solar cell, which showed a power conversion efficiency (PCE) of 0.37%. The possible reasons for low PCE of the present solar cells and the steps needed for further improvement of PCE were discussed. Although the obtained PCE is low, the present strategy opens a new path for the fabrication of eco-friendly CISe NPs solar cell by a relatively chief non-vacuum method.

A Study on the Application Method of Photovoltaic in Building (PV의 건축물 적용기법에 관한 연구)

  • Lee, E.J.;Kim, H.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • This study is a study on the building integrated method of Photovoltaic. It was analyzed into a basic installation condition and an integrated form in this study. And it was confirmed through the 3D simulation & drawing work of an integrated situation to the real domestic building. The Photovoltaic installation of the country to an optimal efficiency for the year must be installed to the due south with an angle of thirty degrees. And also a module spacing must be more than doubled from the bottom to the top of module to prevent from efficiency falling by a shadow of photovoltaic module in a roof setting of flat roof. If Photovoltaic module is an adequate material that is a basic requirement as a building's finishing material, it's not only an efficiency of alternation with an existing finishing material but also a building's design element.

Design of an Energy Management System for On-Chip Solar Energy Harvesting (온칩 태양 에너지 하베스팅을 위한 에너지 관리 시스템 설계)

  • Jeon, Ji-Ho;Lee, Duck-Hwan;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.15-21
    • /
    • 2011
  • In this paper, an energy management circuit for solar energy harvesting system is designed in $0.35{\mu}m$ CMOS technology. The solar energy management system consists of an ISC(Integrated Solar Cell), a voltage booster, and an MPPT(Maximum Power Point Tracker) control unit. The ISC generates an open circuit voltage of 0.5V and a short circuit current of $15{\mu}A$. The voltage booster provides the following circuit with a supply voltage about 1.5V. The MPPT control unit turns on the pMOS switch to provide the load with power while the ISC operates at MPP. The SEMU(Solar Energy Management Unit) area is $360{\mu}m{\times}490{\mu}m$ including pads. The ISC area is $500{\mu}m{\times}2000{\mu}m$. Experimental results show that the designed SEMU performs proper MPPT control for solar energy harvested from the ISC. The measured MPP voltage range is about 370mV∼420mV.