• Title/Summary/Keyword: Integrated Solar Cell

Search Result 97, Processing Time 0.024 seconds

Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System (나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구)

  • Kim, Kwangmin;Kim, Hyungsub;Choi, Dahyun;Lee, Minji;Park, Yunchan;Chu, Wonshik;Chun, Dooman;Lee, Caroline Sunyong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • In this study, Antimony Tin Oxide (ATO) ion storage layer and $TiO_2$ working electrode were fabricated using Nano Particle Deposition System. NPDS is the cutting-edge technology among the dry deposition methods. Accelerated particles are deposited on the substrate through the nozzle using NPDS. The thicknesses for coated layers were measured and layer's morphology was acquired using SEM. The fabricated electrochromic cell's transmittance was measured using UV-Visible spectrometer and power source at 630 nm. As a result, the integrated electrochromic/DSSC hybrid system was successfully fabricated as an energy harvesting system. The fabricated electrochromic cell was self-operated using DSSC as a power source. In conclusion, the electrochromic cell was operated for 500 cycles, with 49% of maximum transmittance change. Also the photovoltaic efficiency for DSSC was measured to be 2.55% while the electrochromic cell on the integrated system had resulted in 26% of maximum transmittance change.

Effects of Surface Homogeneity on Optical Properties of Sputter-deposited AlTiO Selective Transmitting Layers (스퍼터 증착으로 형성된 AlTiO 선택적 투과막의 표면 균질성에 따른 광학적 특성)

  • Jeong, So-Un;Lim, Jung-Wook;Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Transparent dye-sensitized solar cells have been widely investigated for the application to building integrated photovoltaic system. Thin film Si-based solar cells are emerging as a substitute for the dye-sensitized solar cells because their merits of well-established manufacturing processes. Since the selective transmitting layer transmits visible light and reflects infrared light, the solar cell efficiency increases with the introduction of the selective transmitting layer. In this work, AlTiO thin films were grown as the selective transmitting layer by cost-effective sputter deposition and their transmittances were improved by controlling deposition parameters.

Space Weather Monitoring System for Geostationary Satellites and Polar Routes

  • Baek, Ji-Hye;Lee, Jae-Jin;Choi, Seong-Hwan;Hwang, Jung-A;Hwang, Eun-Mi;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2011
  • We have developed solar and space weather monitoring system for space weather users since 2007 as a project named 'Construction of Korea Space Weather Prediction Center'. In this presentation we will introduce space weather monitoring system for Geostationary Satellites and Polar Routes. These were developed for satisfying demands of space weather user groups. 'Space Weather Monitoring System for Geostationary Satellites' displays integrated space weather information on geostationary orbit such as magnetopause location, nowcast and forecast of space weather, cosmic ray count rate, number of meteors and x-ray solar flux. This system is developed for space weather customers who are managing satellite systems or using satellite information. In addition, this system provides space weather warning by SMS in which short message is delivered to users' cell phones when space weather parameters reach a critical value. 'Space Weather Monitoring System for Polar Routes' was developed for the commercial airline companies operating polar routes. This provides D-region and polar cap absorption map, aurora and radiation particle distribution, nowcast and forecast of space weather, proton flux, Kp index and so on.

  • PDF

Economic Feasibility of MicroGrid on the Environmental Cost and Operation Type (환경비용 및 운용방식에 따른 MicroGrid 경제성 분석)

  • Park, Jung-Sung;Shin, Hye-Kyeong;Lee, Duck-Su;Choi, In-Sun;Choi, Young-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1738-1743
    • /
    • 2008
  • Environmental issue is one of the key factors to industry area using fossil fuels, because it accelerates the global warming. So it is supposed to reduce greenhouse gases around the developed nations of the world at times go. This issue is especially for the power industry. Under this background, MicroGrid system that consists of Distributed Energy Resources (DER) system, such as natural power system (wind, solar) and fuel-cell, co-generation, also known as CHP (Combined heat and power), has been developed greatly during the last 10 years. This paper adopts optimal model using GAMS to develop methods for conducting an integrated assessment of MicroGrid system.

Optimal Engineering of MicroGrid on the Environmental Cost and Operation Type (환경비용 및 운용방식을 고려한 마이크로그리드 최적 엔지니어링 연구)

  • Park, Jung-Sung;Shin, Hye-Kyeong;Lee, Duck-Su;Lee, Hak-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.369-371
    • /
    • 2008
  • Environmental issue is one of the key factors to industry area using fossil fuels, because it accelerates the global warming. So it is supposed to reduce greenhouse gases around the developed nations of the world at times go. This issue is especially for the power industry. Under this background, CHP system that consists of Distributed Energy Resources (DER) system, such as natural power system (wind, solar) and fuel-cell, co-generation, also known as CHP (Combined heat and power), has been developed greatly during the last 10 years. This paper adopts optimal model using GAMS to develop methods for conducting an integrated assessment of MicroGrid system.

  • PDF

Initial oxidation process on viinal Si(001) surface: ReaxFF based on molecular dynamics simulation

  • Yun, Gyeong-Han;Lee, Eung-Gwan;Choe, Hui-Chae;Hwang, Yu-Bin;Yun, Geun-Seop;Kim, Byeong-Hyeon;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.300-300
    • /
    • 2011
  • Si oxidation is a key process in developing silicon devices, such as highly integrated metal-oxide-semiconductor (MOS) transistors and antireflection-coating (ARC) on solar cell substrate. Many experimental and theoritical studies have been carried out for elucidating oxidation processes and adsorption structure using ab initio total energy and electronic structure calcultaions. However, the initial oxidation processes at step edge on vicinal Si surface have not been studied using the ReaxFF reactive force field. In this work, strucutural change, charge distribution of oxidized Si throughout the depth from Si surface were observed during oxidation processes on vicinal Si(001) surface inclined by $10.5^{\circ}$ of miscut angle toward [100]. Adsorption energys of step edge and flat terrace were calculated to compare the oxidation reaction at step edge and flat terrace on Si surface.

  • PDF

Functional Inks for Printed Electronics

  • Choi, Young-Min;Jeong, Sun-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.63.1-63.1
    • /
    • 2012
  • In recent years, the functional inks for printed electronics that can be combined with a variety of printing techniques have attracted increasingly significant interest for use in low cost, large area, high performance integrated electronics and microelectronics. In particular, the development of solution-processable conductor, semiconductor and insulator materials is of great importance as such materials have decisive impacts on the electrical performance of various electronic devices, and, therefore, need to meet various requirements including solution processability, high electrical performance, and environmental stability. Semiconductor inks such as IGO, CIGS are synthesized by chemical solution method and microwave reaction method for TFT and solar cell application. Fine circuit pattern with high conductivity, which is valuable for flexible electrode for PCB and TSP devices, can be printed with highly concentrated and stabilized conductor inks such as silver and copper. Solution processed insulator such as polyimide derivatives can be use to all printed TFT device. Our research results of functional inks for printed electronics provide a recent trends and issues on this area.

  • PDF

Demonstration Analysis of 3kW Integrated PV System (3kW급 일체형 계통연계 태양광발전 시스템 실증연구)

  • Cho, A.O.;Kim, J.H.;Na, J.D.;Choi, M.H.;Park, S.K.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.727-729
    • /
    • 2005
  • Solar cell converts sunlight into the electricity that one of the most versatile forms of energy. It has been developed and applied on residental electric power system by urbanized countries as a alternative energy source to overcome energy problem after oil shock. This paper summarizes the results of these efforts by offering a snapshot of the configuration of photovoltaic in residential applications. The status of PV system components and inter -connection and safety equipment will be summarized. Hence this paper discusses only points that might be useful for application.

  • PDF

A study on the Power Characteristics of Hybrid Power System by Active Power Management (능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구)

  • Lee, Bohwa;Park, Poomin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.833-841
    • /
    • 2016
  • The 200 W electrically powered unmanned aerial vehicle, which is studied in this research, uses solar cells, a fuel cell and batteries as the main power source simultaneously. The output of each power source performs power control for each power source by the active power control method so that an adequate capacity of the battery could be maintained while limiting the maximum output of the fuel cell. The output variation for each power source under the active power control method was identified through an integrated ground test. In addition, the effect of limiting the maximum output of the fuel cell on the output variation of the entire system was experimentally identified, and it was confirmed that the adequate maximum output value of the fuel cell for preventing the overdischarge of six series-connected, small size batteries for fuel cell systems is 150 W.

Case Study on 5kWp Transparent Thin-Film BIPV System (5kW급 투광형 박막 BIPV시스템의 실증연구)

  • An, Young-Sub;Kim, Sung-Tae;Lee, Sung-Jin;Song, Jong-Hwa;Hwang, Sang-Kun;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.29-35
    • /
    • 2010
  • This study has been carried out empirical research on Transparent Thin-film BIPV modules, BIPV modules installed on the exterior of the building are applied a laminated module 1kWp, double-glazing module 3kWp and triple-glazing module 1kWp. Applied to the total capacity of BIPV modules are 5kWp. In this study, design and construction process of BIPV systems is presented. In addition, through monitoring of the BIPV system, the temperature and the power characteristics of each module were analyzed. During the measurement period, the module temperature measurement results, the maximum surface temperature of $51.5^{\circ}C$ triple-glazing BIPV module showed the highest, followed by double-glazing BIPV module $49.1^{\circ}C$, $44.7^{\circ}C$ laminated modules, respectively. Power output results, the daily average double-layer modules showed 4.10kWh/day, triple-glazing module 1.57kWh, respectively 1.81kWh laminated modules. In particular, the power efficiency of triple-glazing BIPV module was lower than the power efficiency of the laminated BIPV module. This phenomenon is considered to be affected by the module temperature. In the future, BIPV modules in this study the relationship between module temperature and power characteristics plans to identify.