• Title/Summary/Keyword: Integrated Press System

Search Result 170, Processing Time 0.024 seconds

A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization

  • Talaslioglu, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.417-439
    • /
    • 2021
  • The geometric nonlinearity has been successfully integrated with the design of steel structural system. Thus, the tubular lattice girder, one application of steel structural systems have already been optimized to obtain an economic design following the completion of computationally expensive design procedure. In order to decrease its computing cost, this study proposes to employ five multi-objective metaheuristics for the design optimization of geometrically nonlinear tubular lattice girder. Then, the employed multi-objective optimization algorithms (MOAs), NSGAII, PESAII, SPEAII, AbYSS and MoCell are evaluated considering their computing performances. For an unbiased evaluation of their computing performance, a tubular lattice girder with varying size-shape-topology and a benchmark truss design with 17 members are not only optimized considering the geometrically nonlinear behavior, but three benchmark mathematical functions along with the four benchmark linear design problems are also included for the comparison purpose. The proposed experimental study is carried out by use of an intelligent optimization tool named JMetal v5.10. According to the quantitative results of employed quality indicators with respect to a statistical analysis test, MoCell is resulted with an achievement of showing better computing performance compared to other four MOAs. Consequently, MoCell is suggested as an optimization tool for the design of geometrically nonlinear tubular lattice girder than the other employed MOAs.

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.

Use of unmanned aerial systems for communication and air mobility in Arctic region

  • Gennady V., Chechin;Valentin E., Kolesnichenko;Anton I., Selin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.525-536
    • /
    • 2022
  • The current state of telecommunications infrastructure in the Arctic does not allow providing a wide range of required services for people, businesses and other categories, which necessitates the use of non-traditional approaches to its organization. The paper proposes an innovative approach to building a combined communication network based on tethered high-altitude platform station (HAPS) located at an altitude of 1-7 km and connected via radio channels with terrestrial and satellite communication networks. Network configuration and composition of telecommunication equipment placed on HAPS and located on the terrestrial and satellite segment of the network was justified. The availability of modern equipment and the distributed structure of such an integrated network will allow, unlike existing networks (Iridium, Gonets, etc.), to organize personal mobile communications, data transmission and broadband Internet up to 100 Mbps access for mobile and fixed subscribers, rapid transmission of information from Internet of Things (IoT) sensors and unmanned aerial vehicles (UAV). A substantiation of the possibility of achieving high network capacity in various paths is presented: inter-platform radio links, subscriber radio links, HAPS feeder lines - terrestrial network gateway, HAPS radio links - satellite retransmitter (SR), etc. The economic efficiency of the proposed solution is assessed.

Experimental and analytical study of a new seismic isolation device under a column

  • Benshuai Liang;Guangtai Zhang;Mingyang Wang;Jinpeng Zhang;Jianhu Wang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.415-428
    • /
    • 2023
  • Low-cost techniques with seismic isolation performance and excellent resilience need to be explored in the case of rural low-rise buildings because of the limited buying power of rural residents. As an inexpensive and eco-friendly isolation bearing, scrap tire pads (STPs) have the issue of poor resilience. Thus, a seismic isolation system under a column (SISC) integrated with STP needs to be designed for the seismic protection of low-rise rural buildings. The SISC, which is based on a simple exterior design, maintains excellent seismic performance, while the mechanical behavior of the internal STP provides elastic resilience. The horizontal behaviors of the SISC are studied through load tests, and its mechanical properties and the intrinsic mechanism of the reset ability are discussed. Results indicate that the average residual displacement ratio was 24.59%, and the reset capability was enhanced. Comparative experimental and finite element analysis results also show that the load-displacement relationship of the SISC was essentially consistent. The dynamic characteristics of isolated and fixed-base buildings were compared by numerical assessment of the response control effects, and the SISC was found to have great seismic isolation performance. SISC can be used as a low-cost base isolation device for rural buildings in developing countries.

Rapid construction delivery of COVID-19 special hospital: Case study on Wuhan Huoshenshan hospital

  • Wang, Chen;Yu, Liangcheng;Kassem, Mukhtar A.;Li, Heng;Wang, Ziming
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.345-369
    • /
    • 2022
  • Infectious disease emergency hospitals are usually temporarily built during the pneumonia epidemic with higher requirements regarding diagnosis and treatment efficiency, hygiene and safety, and infection control.This study aims to identify how the Building Information Modeling (BIM) + Industrialized Building System (IBS) approach could rapidly deliver an infectious disease hospital and develop site epidemic spreading algorithms. Coronavirus-19 pneumonia construction site spreading algorithm model mind map and block diagram of the construction site epidemic spreading algorithm model were developed. BIM+IBS approach could maximize the repetition of reinforced components and reduce the number of particular components. Huoshenshan Hospital adopted IBS and BIM in the construction, which reduced the workload of on-site operations and avoided later rectification. BIM+IBS integrated information on building materials, building planning, building participants, and construction machinery, and realized construction visualization control and parametric design. The delivery of Huoshenshan Hospital was during the most critical period of the Coronavirus-19 pneumonia epidemic. The development of a construction site epidemic spreading algorithm provided theoretical and numerical support for prevention. The agent-based analysis on hospital evacuation observed "arched" congestion formed at the evacuation exit, indicating behavioral blindness caused by fear in emergencies.

New generation software of structural analysis and design optimization--JIFEX

  • Gu, Yuanxian;Zhang, Hongwu;Guan, Zhenqun;Kang, Zhan;Li, Yunpeng;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.589-599
    • /
    • 1999
  • This paper presents the development and applications of the software package JIFEX, a new finite element system which can be used for structural analysis and optimum design by the modern computer hardware and software technologies such as MS Windows95/NT and Pentium PC platforms. The complete system of JIFEX is programmed with $C/C^{++}$ language to make full use of advanced facilities of MS Windows95/NT. In the system, the finite element data pre-processing, based on the most popular CAD package AutoCAD (R13, R14), has been implemented, so that the finite element modeling could be integrated with geometric modeling of CAD. The system not only has interactive graphics facility for data post-processing, but also realizes the real-time computing visualization by means of the Dynamic Data Exchange (DDE) technique. Running on the Pentium computers, JIFEX can solve large-scale finite element analysis problems such as the ones with more than 60000 nodes in the finite element model.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Dynamic response of integrated vehicle-bridge-foundation system under train loads and oblique incident seismic P waves

  • Xinjun Gao;Huijie Wang;Fei Feng;Jianbo Wang
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.149-162
    • /
    • 2024
  • Aiming at the current research on the dynamic response analysis of the vehicle-bridge system under earthquake, which fails to comprehensively consider the impact of seismic wave incidence angles, terrain effects and soil-structure dynamic interaction on the bridge structure, this paper proposes a multi-point excitation input method that can consider the oblique incidence seismic P Waves based on the viscous-spring artificial boundary theory, and verifies the accuracy and feasibility of the input method. An overall numerical model of vehicle-bridge-soil foundation system in valley terrain during oblique incidence of seismic P-wave is established, and the effects of seismic wave incidence characteristics, terrain effects, soil-structure dynamic interactions, and vehicle speeds on the dynamic response of the bridge are analyzed. The research results indicate that with an increase in P wave incident angle, the vertical dynamic response of the bridge structure decreased while the horizontal dynamic response increased significantly. Traditional design methods which neglect multi-point excitation would lead to an unsafe structure. The dynamic response of the bridge structure significantly increases at the ridge while weakening at the valley. The dynamic response of bridge structures under earthquake action does not always increase with increasing train speed, but reaches a maximum value at a certain speed. Ignoring soil-structure dynamic interaction would reduce the vertical dynamic response of the bridge piers. The research results can provide a theoretical basis for the seismic design of vehicle-bridge systems in complex mountainous terrain under earthquake excitation.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

Newspaper analysis of research on dental hygienists in Korea from 2005 to 2008 (한국 신문에 게재된 치과위생사 관련 기사 분석: 2005~2008년 기사를 중심으로)

  • Oh, Sang-Hwan;Nam, Yong-Ok;Jang, Jong-Hwa
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.59-71
    • /
    • 2009
  • Objectives : The purpose of this study is to devise a way of the dental hygienist to explore the articles of dental hygienist that were presented in the newspaper during the recent 3 years of Korea. Methods : This study is to examine dental hygienist articles with content analysis in the KINDS(Korean Integrated News Database System) of the Korean Press Foundation. Data were gathered from the printed newspaper of Korea over a period of 3 years - 1 March, 2005 to 30 March 2008. News reports, comments and letters to the editor were analysed, which revealed an image of dental hygienist that we would like to explore and debate. The obtained data from the frequency, percentage, chi-squared test between categories after inter-coder reliability test (reliability 0.96). Results : The articles of dental hygienist according to type of newspaper, 'local newspaper' showed higher frequency than 'metropolitan newspaper'. It mix '치과위생사'(42.3%), '치위생사'(49.4%), and '위생사'(3.9%) in use of name. The article pattern, 'news' 40.0%, 'information commentary' 18.3%, 'interview man' 15.8%, 'special news' 14.2% in metropolitan newspaper, then, 'news' 72.6%, 'information commentary' 23.2% in local newspaper (p<0.05). Most plenty of subject is 'administration system', and then 'celebration', 'publicity'. It showed 'seoul' was 'information commentary', 'country' was 'administration system', 'whole' was 'legal duty', 'unrelated area' was 'social living' in the topic of article according to newsbeat(p<0.05). Conclusions : These results suggest that it is necessary to publicity name, duty of dental hygienist in metropolitan newspaper officially.

  • PDF