• Title/Summary/Keyword: Integrated Navigation

Search Result 706, Processing Time 0.027 seconds

A Study on Implementation and Performance Evaluation of Error Amplifier for the Feedforward Linear Power Amplifier (Feedforward 선형 전력증폭기를 위한 에러증폭기의 구현 및 성능평가에 관한 연구)

  • Jeon, Joong-Sung;Cho, Hee-Jea;Kim, Seon-Keun;Kim, Ki-Moon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.209-215
    • /
    • 2003
  • In this paper. We tested and fabricated the error amplifier for the 15 Watt linear power amplifier for the IMT-2000 baseband station. The error amplifier was comprised of subtractor for detecting intermodulation distortion, variable attenuator for control amplitude, variable phase shifter for control phase, low power amplifier and high power amplifier. This component was designed on the RO4350 substrate and integrated the aluminum case with active biasing circuit. For suppression of spurious, the through capacitance was used. The characteristics of error amplifier measured up to 45 dB gain, $\pm$0.66 dB gain flatness and -15 dB input return loss. Results of application to the 15 Watt feedforward Linear Power Amplifier, the error amplifier improved with 27 dB cancellation from 34 dBc to 61 dBc IM$_3$.

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.

Development of GPS/IMU/SPR Integrated Algorithm and Performance Analysis for Determination of Precise Car Positioning (정밀 차량 위치결정을 위한 GPS/IMU/SPR 통합 알고리즘 개발 및 성능 분석)

  • Han, Joong-Hee;Kang, Beom Yeon;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Based on the GPS/IMU integration, the car navigation has unstable conditions as well as drastically reduces accuracies in urban region. Nowadays, many cars mounted the camera to record driving states. If the ground coordinates of street furniture are known, the position and attitude of camera can be determined through SPR(Single Photo Resection). Therefore, an estimated position and attitude from SPR can be applied measurements in Kalman filter for updating errors of navigation solutions from GPS/IMU integration. In this study, the GPS/IMU/SPR integration algorithm was developed in loosely coupled modes through extended Kalman filters. Also, in order to analyze performances of GPS/IMU/SPR, simulation tests were conducted in GPS signal reception environments and the GCPs (Ground Control Points) distributions. In fact, the position and attitude gathered from GPS/IMU/SPR integration are more precise than the position and attitude from GPS/IMU integration. When IPs (image points), corresponded to GCPs, were concentrated in the center of image, the position error in the optical axis respectively increased. To understand effects from SPR, we plan to carry additional test on the magnitude of GCP, IP and initial exterior orientation errors.

Selection of Auditory Icons in Ship Bridge Alarm Management System Using the Sensibility Evaluation (감성평가를 이용한 선교알람관리시스템의 청각아이콘 평가)

  • Oh, Seungbin;Jang, Jun-Hyuk;Park, Jin Hyoung;Kim, Hongtae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.401-407
    • /
    • 2013
  • In parallel with the development of ship equipment, bridge systems have been improved, but marine accidents due to human error have not been reduced. Recently, research in nautical bridge equipment has focused on suitable ergonomic designs in order to reduce these errors due to human factors. In a bridge of a ship, there are numerous auditory signals that deliver important information clearly to the sailors. However, only a few studies have been conducted related to the human recognition of these auditory signals. There are three types of auditory signals: voice alarms, abstract sounds, and auditory icons. This study was conducted in order to design more appropriate auditory icons using a sensibility evaluation method. The auditory icons were rated to have five warning situations (engine failure, fire, steering failure, low power, and collision) using the Semantic Differential Method. It is expected that the results of this study will be used as basic data for auditory displays inside bridges and for integrated bridge alarm systems.

Pin Distribute Method of Twist Cable at Military Unmanned Vehicle Wiring Unit Connector (군용 무인 이동체 배선장치 커넥터에서 트위스트 케이블 핀 배치 최적화 방안)

  • Eun, Hee-hyun;Roh, Dong-gyu;Kwak, Gyu-min;Kim, Jae-seung;Lee, Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.245-250
    • /
    • 2020
  • Currently, unmanned military vehicles under development in Korea have more devices to carry out various missions, and interface cables between them are also increasing. In addition, due to a small space problem inside the unmanned vehicle, devices are required to be miniaturized and integrated. For two reasons, connectors also need to be selected, which makes them vulnerable to noise due to the closer distance between the pins. In this paper, we analyzed how much the magnetic field produced by noise at the connector pin where cable twist is released affects the surrounding pin and presented the guide for optimal pin placement. First, the effect of magnetic field is greater than the crosstalk between pin and pin. Second, the magnetic field on both sides between + and - is strong when approaching one step with noise source. Third, the magnetic field strength is improved when setting the ground pin as the ground pin between the noise and the original signal when approaching the A noise source and the two steps. Fourth, in the case of a differential mode communication, the optimal placement area of the sensitive signal was presented according to positions Tx± and Rx±.

A Study on the Lighting Control System using Fuzzy Control System and RGB Modules in the Ship's Indoor (퍼지 제어 시스템과 RGB LED 모듈을 이용한 선박 실내용 조명 제어 시스템에 관한 연구)

  • Nam, Young-Cheol;Lee, Sang-Bae
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.421-426
    • /
    • 2018
  • With regard to LED lighting devices which have currently been commercialized, LED operating sequences are being sold in a fixed state. In such a state, the external environmental factors are not taken into consideration as only the illumination environment application is considered. Currently, it is difficult to create an optimal lighting environment which can adapt to changes in external environmental factors in the ship. Therefore, it was concluded that there is a need to input the external environment value so that the optimal illumination value can be reflected in real time in order to adapt more organically and actively to the change of external environmental factors. In this paper, we used a microprocessor as an integrated management system for environmental data that changes in real time according to existing external environmental factors. In addition, a controller capable of lighting control of RGB LED module by combining fuzzy inference system. For this, a fuzzy control algorithm is designed and a fuzzy control system is constructed. The distance and the illuminance value from the external environment element are input to the sensor, and these values are converted to the optimum illumination value through the fuzzy control algorithm, and are expressed through the dimming control of the RGB LED module and the practical effectiveness of the fuzzy control system is confirmed.

A Study on Improving the Storm and Wind Damage Management System of Coastal Cities (연안도시 풍수해 관리체계 개선방안에 관한 연구)

  • Oh, Sang-Baeg;Lee, Han-Seok
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.209-218
    • /
    • 2019
  • Coastal cities suffer a great deal of storm and wind damage. The storm and wind characteristics vary between cities. Therefore, a storm and wind damage management system suited for specific characteristics is required for each coastal city. In this study, we analyze the current situation and establish the problem of storm and wind damage management system in regards to urban management, coastal management and disaster management. We also review the storm and wind damage management system for the USA and Japan. We consequently propose a plan to improve the storm and wind damage management system. As a result of the study, in terms of city management, we recommend the compulsory identification of disaster prevention districts, implementation of the integrated coastal city management plan, designation of natural disaster risk mitigation area as disaster prevention district, the division of disaster prevention district into wind damage prevention district, storm damage prevention district, erosion damage prevention district, the building of restrictions at the disaster prevention district by ordinance, etc. In regards to coastal management, we suggest the delegation of authority to delegate coastal erosion management area to the local government, the subdivision of coastal erosion management area into erosion serious area, erosion progress area, erosion concern area, the building restrictions at coastal erosion management area by ordinance, development of erosion prediction chart, etc. In relation to disaster management, we recommend the integration of "countermeasures against natural disasters act" and "disasters and safety management basic act", the local government-led disaster prevention system, the local disaster management network, and the customized local disaster prevention plan, etc.

A Study on the Relative Importance of Evaluation Factors for Improvement of Port Security (항만보안 강화를 위한 평가요인과 상대적 중요도 분석)

  • Kang, Min-Gu;Kim, Hwa-Young
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • The purpose of this study was to extract the evaluation factors and assess the relative importance between the factors. For this purpose, the evaluation factors were extracted through literature review and the process of brainstorming with experts, who are related to port security. The evaluation factors were then classified into four higher factors and twelve sub- factors through the use of the AHP method. A survey on the classified factors was conducted by experts composed of public officials, port authority employees and education institutions officials. We also carried out statistical tests to determine the perception gap of weights between the groups. As a result of a relative importance analysis of strength, the security operating system factor was highest, followed by improvement of hardware facilities and increase of security personnel. There was a difference in perception among the groups in policy support, facility support and personnel resources budget support. The results of the analysis show that the strength operating system through the establishment of an integrated monitoring system is a priority. It is necessary to understand the difference of perception between groups and build a systematic cooperation system. The evaluation factors extracted from this study can be used for the measurement of port security efficiency in further work.

A Study on the Sharing and Utilizing the Domestic Aviation Safety Information Based on FAA Case (FAA 사례 기반 국내 항공안전정보 공유·활용 방안 연구)

  • Park, Yu-rim;Kim, Jun-hwan;Choi, Hyun-seon;Chung, Min-joo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.54-62
    • /
    • 2022
  • ICAO has recommended data-based aviation safety management and decision-making systems through Annex 19(Safety Management) and Doc 9859(Safety Management Manual), stressing that safety can be greatly improved by sharing aviation safety information throughout the industry. Accordingly, advanced aviation countries have built infrastructure to collect and analyze various aviation safety data in an integrated manner, and also tried to spread identified major safety issues across the industry. On the other hand, in Korea, each stakeholder collects, manages and analyzes safety data individually, so there is a limit to use them in integrative manner. In addition, the scope of using and sharing aviation safety information such as analysis result is also focused on safety management at the national government level, which is insufficient to be shared throughout the industry. Accordingly, the purpose of this study is to present a plan to share and utilize the domestic aviation safety information. To do this, we compare the current situation between FAA and domestic industry and suggest the improvement plans.

Research on Basic Concept Design for Digital Twin Ship Platform (디지털트윈 선박 플랫폼 설계를 위한 연구)

  • Yoon, Kyoungkuk;Kim, Jongsu;Jeon, Hyeonmin;Lim, Changkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1086-1091
    • /
    • 2022
  • The International Maritime Organization is establishing international agreements on maritime safety and security to prepare for the introduction of autonomous ships. In Korea, the industry is focusing on autonomous navigation system technology development, and to reduce accidents involving coastal ships, research on autonomous ship technology application plans for coastal ships is in progress. Interest in autonomously operated ships is increasing worldwide, and maritime demonstrations for verification of developed technologies are being pursued. In this study, a basic investigation was conducted on the design of a demonstration ship and an onshore platform (remote support center) using digital twin technology for application to coastal ships. To apply digital twin technology, an 8-m small battery-powered electric propulsion ship was selected as the target. The basic design of the twin-integrated platform was developed. The ship navigation and operation data were stored on a server system, and remote-control commands of the electric propulsion ship was achieved through communication between the ship and the onshore platform. Ship performance management, operation and operation optimization, and predictive control are possible using this digital twin technology. This safe and economical digital twin technology is applicable to ships responding to crisis scenarios.