• Title/Summary/Keyword: Integrated Map of Underground Spaces

Search Result 5, Processing Time 0.019 seconds

Development of 2D Data Quality Validation Techniques for Pipe-type Underground Facilities (2차원 관로형 지하시설물 정보 품질검증기술 개발)

  • Sang-Keun Bae;Sang-Min Kim;Eun-Jin Yoo;Keo-Bae Lim;Da-Woon Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • As various accidents have occurred in underground spaces, we aim to improve the quality validation standards and methods as specified in the Regulations on Producing Integrated Map of Underground Spaces devised by the Ministry of Land, Infrastructure and Transport of the Republic of Korea for a high-quality integrated map of underground spaces. Specifically, we propose measures to improve the quality assurance of pipeline-type underground facilities, the so-called life lines given their importance for citizens' daily activities and their highest risk of accident among the 16 types of underground facilities. After implementing quality validation software based on the developed quality validation standards, the adequacy of the validation standards was demonstrated by testing using data from two-dimensional water supply facilities in some areas of Busan, Korea. This paper has great significance in that it has laid the foundation for reducing the time and manpower required for data quality inspection and improving data quality reliability by improving current quality validation standards and developing technologies that can automatically extract errors through software.

A Study on 3D Tunnel Data Model for Integrated Map of Underground Spaces (지하공간통합지도의 3차원 터널 데이터 모델에 관한 연구)

  • Lee, Ji Yeon;Ryu, Ji Hui;Jeong, Da Woon;Ahn, Jong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.371-380
    • /
    • 2021
  • This study aims to design a tunnel part model for underpass and subway lines that correspond to tunnel sector among the underground facilities(structure types) covered in the integrated map of underground spaces. For this purpose, we compared and reviewed the characteristics of international standards related to tunnel data models. As a result, it was found that CityGML 3.0 - Tunnel module was the most suitable for designing a 3D tunnel data model. Afterwards we reviewed the legal and institutional regulations to derive the standard elements of the 3D tunnel data model. Then we conducted a demand survey targeting experts in related fields to derive standard elements for addition and extension of underpasses and subway lines. Based on the above process, we designed and presented a 3D tunnel data model using UML. This study is expected to be meaningful as a basic study to improve the utilization of tunnel model in the integrated map of underground spaces.

A Study on Improving the Data Quality Validation of Underground Facilities(Structure-type) (지하시설물(구조물형) 데이터 품질검증방법 개선방안 연구)

  • Bae, Sang-Keun;Kim, Sang-Min;Yoo, Eun-Jin;Im, Keo-Bae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.5-20
    • /
    • 2021
  • With the available national spatial information that started from the sinkholes that occurred nationwide in 2014 and integrated 15 areas of underground information, the Underground Spatial Integrated Map has been continuously maintained since 2015. However, until recently, as disasters and accidents in underground spaces such as hot water pipes rupture, cable tunnel fires, and ground subsidence continue to occur, there is an increasing demand for quality improvement of underground information. Thus, this paper attempted to prepare a plan to improve the quality of the Underground Spatial Integrated Map data. In particular, among the 15 types of underground information managed through the Underground Spatial Integrated Map, quality validation improvement measures were proposed for underground facility (structure-type) data, which has the highest proportion of new constructions. To improve the current inspection methods that primarily rely on visual inspection, we elaborate on and subdivide the current quality inspection standards. Specifically, we present an approach for software-based automated inspection of databases, including graphics and attribute information, by adding three quality inspection items, namely, quality inspection methods, rules, and flow diagram, solvable error types, to the current four quality inspection items consisting of quality elements, sub-elements, detailed sub-elements, and quality inspection standards.

Development of 3D Underground Information Construction and Visualization System Based on IUGIM (지하공간통합지도 기반 3차원 지하정보 구축 및 가시화시스템 개발)

  • Kang, Kyung Nam;Kim, Wooram;Hwang, Seung Hyun;An, Joon Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • Due to recent underground space accidents, are a frequent occurence in Korea, the government established the basic plan for the construction of the IUGIM (Integrated Underground Geospatial Information Map) in 2015 as a measure for safety management of underground spaces. The development of IUGIM was partially completed as of 2021. The underground space management entity and related organizations are utilizing it. This study is being carried out as part of a plan to improve the usability of IUGIM, and to build a visualization system that compares real-time field data with stored data. A system, equipped with a visualization function for borehole data and 6 types of underground facilities built and managed on IUGIM; a tool capable of comparative analysis with real-time data measured in the field, is being built. The 6 types of underground facilities are water supply pipe, sewage pipe, power pipe, gas pipe, communication pipe, and heating pipe. The completed system was demonstrated at three locations in Seocho-gu, Gangnam-gu in Seoul. The field demonstration was carried out by accessing the mobile center and downloading IUGIM data, visualizing IUGIM data (surface creation, borehole information, underground facilities), and visualizing the GPR(Ground Penetrating Radar)-based data acquired at the field. As a result of the empirical results of IUGIM data and GPR-based field data, it was judged to be suitable. As a result of this study, it is judged that it can be helpful for safe construction at the excavation site.

Applicability Analysis of Measurement Data Classification and Spatial Interpolation to Improve IUGIM Accuracy (지하공간통합지도의 정확도 향상을 위한 계측 데이터 분류 및 공간 보간 기법 적용성 분석)

  • Lee, Sang-Yun;Song, Ki-Il;Kang, Kyung-Nam;Kim, Wooram;An, Joon-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.17-29
    • /
    • 2022
  • Recently, the interest in integrated underground geospatial information mapping (IUGIM) to ensure the safety of underground spaces and facilities has been increasing. Because IUGIM is used in the fields of underground space development and underground safety management, the up-to-dateness and accuracy of information are critical. In this study, IUGIM and field data were classified, and the accuracy of IUGIM was improved by spatial interpolation. A spatial interpolation technique was used to process borehole data in IUGIM, and a quantitative evaluation was performed with mean absolute error and root mean square error through the cross-validation of seven interpolation results according to the technique and model. From the cross-validation results, accuracy decreased in the order of nonuniform rational B-spline, Kriging, and inverse distance weighting. In the case of Kriging, the accuracy difference according to the variogram model was insignificant, and Kriging using the spherical variogram exhibited the best accuracy.