• Title/Summary/Keyword: Integrated MAC

Search Result 82, Processing Time 0.018 seconds

Approaches to the Design and Modularization for Implementing Multimedia-based Underwater Communication to Use Integrated MAC (통합 MAC을 이용하는 다중 매체 기반 수중 통신 구현을 위한 설계 및 모듈화 접근방법)

  • You, Dongsun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1259-1268
    • /
    • 2019
  • Recently, Communication media have been developed for the underwater communication in underwater environments where the underwater communication failures occur frequently. Although the underwater communication by one medium is not stable due to the influence of the underwater environment, the use of various communication media can complement each other and so this makes the underwater communication more stable. For this reason, this paper proposes approaches to the design and implementation of integrated MAC for complementing individual unstable underwater communications. In addition this paper presents the comparison and analysis on each of the proposed approaches so to be able to provide guidelines to designers and implementers of integrated MAC.

Energy-efficient Relay MAC with Dynamic Power Control in Wireless Body Area Networks

  • Cai, Xuelian;Yuan, Jingjing;Yuan, Xiaoming;Zhu, Wu;Li, Jiandong;Li, Changle;Ullah, Sana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1547-1568
    • /
    • 2013
  • Wireless body area network (WBAN) is an emerging short-range wireless communication network with sensor nodes located on, in or around the human body for healthcare, entertainment and ubiquitous computing. In WBANs, energy is severely constrained which is the prime consideration in the medium access control (MAC) protocol design. In this paper, we propose a novel MAC protocol named Energy-efficient Relay MAC with dynamic Power Control (ERPC-MAC) to save energy consumption. Without relying on the additional devices, ERPC-MAC employs relaying nodes to provide relay service for nodes which consume energy fast. Accordingly the superframe adjustment is performed and then the network topology can be smoothly switched from single-hop to multi-hop. Moreover, for further energy saving and reliability improvement, the dynamic power control is introduced to adjust the power level whenever a node transmits its packets to the coordinator or the relaying node. To the best of the authors' knowledge, this is the first effort to integrate relay, topology adjustment and power control to improve the network performance in a WBAN. Comprehensive simulations are conducted to evaluate the performance. The results show that the ERPC-MAC is more superior to the existing standard and significantly prolongs the network lifetime.

Research on Anti-Reader Collision Protocols for Integrated RFID-WSNs

  • Ko, Doo-Hyun;Kim, Bum-Jin;An, Sun-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.776-796
    • /
    • 2010
  • Integrated RFID-WSNs (wireless sensor networks) have recently been researched to provide object identities, sensing information, mobile service, and network functionalities. In integrated RFID-WSNs, the reader collision is one of the critical problems. Above all, due to the absence of universally applicable anti-collision protocols and the channel capture phenomenon, the medium access control protocols in integrated RFID-WSNs suffer from reader collision and starvation problems. In this paper, we propose an efficient MAC protocol, called EMP, to avoid the above problems in integrated RFID-WSNs. EMP is a CSMA-based MAC protocol which is compatible with sensor networks operating on integrated nodes which consist of an RFID reader and a senor node. EMP resolves not only the reader collision problem, but also the starvation problem using a power control mechanism. To verify the performance of EMP, we compared it with other anti-reader collision MAC protocols using simulations. As a result, the performance of EMP showed improvements in throughput, system efficiency, and energy consumption compared to the single data channel protocols (CSMA/CA, Pulse, and DiCa) in dense deployment environments.

Reader Collision Avoidance Scheme for Mobile RFID-Sensor Integrated Networks

  • Ko, Doo-Hyun;Kim, Song-Min;Lee, Sang-Bin;An, Sun-Shin
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.108-117
    • /
    • 2009
  • In recent years, one of alternatives for constructing RFID networks that provide mobile services is using wireless sensor networks (WSN) to enhance network capacity, utility and scalability. Due to absence of compatible reader anti-collision control and channel capture phenomenon, the medium access control protocols as used in the RFID networks lead to reader collision and starvation problem. In this paper, we develop a MAC protocol which is called Enhanced Collision Avoidance MAC (ECO) to avoid reader to reader collisions in an integrated RFID network. ECO is a CSMA-based MAC protocol, and operates on integrated nodes which consist of a RFID reader and a mote. Performance evaluation shows superior results to pure-CSMA protocols under dense deployment environments, both in number of failures and in throughput.

  • PDF

Design and Implementation of the subscriber MAC protocol in the BWA system

  • Hwang, You-Sun;Kim, Eung-bae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.569-572
    • /
    • 2003
  • The broadband wireless access industry, which provides high-tate network connections to stationary sites, has matured to the point at which it now has a standard for second-generation wireless metropolitan area networks. IEEE Standard 802.16, with its WirelessMAN air interface, set the stage for widespread and effective deployments worldwide. This paper presents an implementation of media access control that can be applied to BWA (Broadband Wireless Access) system. Medium access control (MAC) is a key issue in multi-access networks where a common channel is shared by many users. The designed MAC prototype roughly consists of MAC Hardware and MAC Software. The MAC Hardware part includes timing process, MAC transmission control, MAC reception control, and CRC/HCS process. The MAC Software part includes control of MAC signaling, network interface, and Physical (PHY) control. The designed MAC protocol will be integrated with the PHY of BWA in future and we can test overall system performance of MAC and PHY.

  • PDF

Asynchronous Traffic Multi-Hop Transmission Scheme for N-Screen Services in Indoor and Ship Area Networks (선박 및 실내 N-스크린 서비스를 위한 비동기 트래픽 멀티홉 전송 기술)

  • Hur, Kyeong;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.950-956
    • /
    • 2015
  • In this paper, a WiMedia Distributed-MAC (D-MAC) protocol is adopted for development of a seamless N-screen wireless service in Indoor and Ship Area Networks. Furthermore, to provide the OSMU (One Source Multi Use) N-screen service through P2P streaming in the seamless D-MAC protocol, a ATMT (Asynchronous Traffic Multi-hop Transmission) technology is proposed and analyzed. In this system, a WiMedia ATMT D-MAC bridge transmits control and managing information to various sensors and instruments, from a central integrated ship area network station. For this technology, a time slot allocation scheme for WiMedia asynchronous traffic and a multi-hop resource reservation scheme are combined to evaluate the performance of each scheme. From simulation results, the proposed ATMT scheme enhances performances in viewpoints of N-screen asynchronous data latency and throughput, compared to the conventional WiMedia D-MAC system.

Compact CNN Accelerator Chip Design with Optimized MAC And Pooling Layers (MAC과 Pooling Layer을 최적화시킨 소형 CNN 가속기 칩)

  • Son, Hyun-Wook;Lee, Dong-Yeong;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1158-1165
    • /
    • 2021
  • This paper proposes a CNN accelerator which is optimized Pooling layer operation incorporated in Multiplication And Accumulation(MAC) to reduce the memory size. For optimizing memory and data path circuit, the quantized 8bit integer weights are used instead of 32bit floating-point weights for pre-training of MNIST data set. To reduce chip area, the proposed CNN model is reduced by a convolutional layer, a 4*4 Max Pooling, and two fully connected layers. And all the operations use specific MAC with approximation adders and multipliers. 94% of internal memory size reduction is achieved by simultaneously performing the convolution and the pooling operation in the proposed architecture. The proposed accelerator chip is designed by using TSMC65nmGP CMOS process. That has about half size of our previous paper, 0.8*0.9 = 0.72mm2. The presented CNN accelerator chip achieves 94% accuracy and 77us inference time per an MNIST image.

An Efficient Downlink MAC Protocol for Multi-User MIMO WLANs

  • Liu, Kui;Li, Changle;Guo, Chao;Chen, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4242-4263
    • /
    • 2017
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) technology has recently attracted significant attention from academia and industry because of it is increasingly important role in improving networks' capacity and data rate. Moreover, MU-MIMO systems for the Fifth Generation (5G) have already been researched. High Quality of Service (QoS) and efficient operations at the Medium Access Control (MAC) layer have become key requirements. In this paper, we propose a downlink MU-MIMO MAC protocol based on adaptive Channel State Information (CSI) feedback (called MMM-A) for Wireless Local Area Networks (WLANs). A modified CSMA/CA mechanism using new frame formats is adopted in the proposed protocol. Specifically, the CSI is exchanged between stations (STAs) in an adaptive way, and a packet selection strategy which can guarantee a fairer QoS for scenarios with differentiated traffic is also included in the MMM-A protocol. We then derive the expressions of the throughput and access delay, and analyze the performance of the protocol. It is easy to find that the MMM-A protocol outperforms the commonly used protocols in terms of the saturated throughput and access delay through simulation and analysis results.

Performance Analysis of WiMedia D-MAC Communications for a Shipboard Wireless Bridge (선내 무선 브릿지용 와이미디어 D-MAC 통신의 성능분석)

  • Hur, Kyeong;Jeong, Min-A;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.597-607
    • /
    • 2014
  • An integrated ship area network has functionality of remote control and autonomous management of various sensors and instruments embedded or boarded in a ship. For such environment, a wireless bridge is essential to transmit control and/or managing information to sensors or instruments from a central integrated ship area network station. In this paper, one of reliable schemes of wireless bridge using WiMedia distributed MAC (D-MAC) protocol is proposed to increase a communication reliability. Simulation results show that the proposed wireless bridge using WiMedia D-MAC protocol guarantees reliable communications between 2-hop devices.

A MAC Protocol for Integrated Service in the Multi-Hop Ad-Hoc Maritime Communication Network (다중 홉 해양통신망에서 실시간 통합 서비스를 위한 MAC 프로토콜)

  • Cho, Kumin;Yun, Changho;Lim, Yong-Kon;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.603-611
    • /
    • 2013
  • In this paper, we propose a new frame structure and the underlying dynamic resource control mechanism to support an integrated service, including a real-time (RT) service that requires to serve the end-to-end delay performance, as well as non-real-time (NRT) service, using Self-Organizing Time Division Multiple Access (SO-TDMA)-based MAC protocol in a multi-hop ad-hoc maritime communication network. The underlying frame structure is dynamically configured by resource allocation to guarantee the average target outage performance of the real-time service. Toward this end, we analyze the average outage probability and its performance is verified for the proposed frame structure by simulation.