• Title/Summary/Keyword: Integrated Construction Information Classification

Search Result 50, Processing Time 0.022 seconds

An Integrated Construction Management System Based on the Earned Value Concept (EV개념에 의한 통합건설공사관리시스템)

  • Chung Chul-Won;Lee Jeom-Su;Oh Kyu-Whan;Chang Jin-Sik;Lee Yu-Seop;Park Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.155-162
    • /
    • 2001
  • Recently, in Korea, a few construction companies have been tried to develop a management system, which is able to integrate schedule and cost. In spite of these attempts, however, advanced management techniques can be hardly applied under the BoQ based management system. In order to improve these problems, many studies have been peformed, but yet could not overcome practical limitations. Besides, the application of historical data is below the level since it is so difficult to accumulate and feed-back historical data under the unique character of construction industry. Consequently, lots of time and effort have being wasted to establish control criteria. The newly generated Information is not systematically managed as well. Therefore, this study suggests Integrated Construction Management System complemented the existing practical problems.

  • PDF

Data-processing pipeline and database design for integrated analysis of mycoviruses

  • Je, Mikyung;Son, Hyeon Seok;Kim, Hayeon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.115-122
    • /
    • 2019
  • Recent and ongoing discoveries of mycoviruses with new properties demand the development of an appropriate research infrastructure to analyze their evolution and classification. In particular, the discovery of negative-sense single-stranded mycoviruses is worth noting in genome types in which double-stranded RNA virus and positive-sense single-stranded RNA virus were predominant. In addition, some genomic properties of mycoviruses are more interesting because they have been reported to have similarities with the pathogenic virus family that infects humans and animals. Genetic information on mycoviruses continues to accumulate in public repositories; however, these databases have some difficulty reflecting the latest taxonomic information and obtaining specialized data for mycoviruses. Therefore, in this study, we developed a bioinformatics-based pipeline to efficiently utilize this genetic information. We also designed a schema for data processing and database construction and an algorithm to keep taxonomic information of mycoviruses up to date. The pipeline and database (termed 'mycoVDB') presented in this study are expected to serve as useful foundations for improving the accuracy and efficiency of future research on mycoviruses.

Construction of the Digital Archive System from the Records of Westerners Who Stayed in Korea during the Enlightenment Period of Chosun (개화기 조선 체류 서양인 기록물의 디지털 아카이브 시스템 구축)

  • Chung, Heesun;Kim, Heesoon;Song, Hyun-Sook;Lee, Myeong-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.27 no.4
    • /
    • pp.229-249
    • /
    • 2016
  • This study was conducted to create a digital archive for local cultural contents compiled from the records of westerners who stayed in Korea during the Enlightenment Period of Chosun. The compiled information were gathered from 22 records, and 10 main subjects, 40 sub-subjects and 239 mini-subjects were derived through the subject classification scheme. Item analysis was conducted through 38 metadata and input data types were classified and databased in Excel. Finally, a web-based digital archiving system was developed for searching and providing information through various access points. Suggestions for future research were made to expand archive contents through continuous excavation of westerners' records, to build an integrated information system of Korean digital archives incorporating individual archive systems, to develop standardization of classification schemes and a multidimensional classification system considering facet structure in cultural heritage areas, to keep consistency of contents through standardization of metadata format, and to build ontology using semantic search functions and data mining functions.

Developing and Evaluating Damage Information Classifier of High Impact Weather by Using News Big Data (재해기상 언론기사 빅데이터를 활용한 피해정보 자동 분류기 개발)

  • Su-Ji, Cho;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.7-14
    • /
    • 2023
  • Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.

Classification and Retrieval of Object - Oriented Reuse Components with HACM (HACM을 사용한 객체지향 재사용 부품의 분류와 검색)

  • Bae, Je-Min;Kim, Sang-Geun;Lee, Kyung-Whan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1733-1748
    • /
    • 1997
  • In this paper, we propose the classification scheme and retrieval mechanism which can apply to many application domains in order to construct the software reuse library. Classification scheme which is the core of the accessibility in the reusability, is defined by the hierarchical structure using the agglomerative clusters. Agglomerative cluster means the group of the reuse component by the functional relationships. Functional relationships are measured by the HACM which is the representation method about software components to calculate the similarities among the classes in the particular domain. And clustering informations are added to the library structure which determines the functionality and accuracy of the retrieval system. And the system stores the classification results such as the index information with the weights, the similarity matrix, the hierarchical structure. Therefore users can retrieve the software component using the query which is the natural language. The thesis is studied to focus on the findability of software components in the reuse library. As a result, the part of the construction process of the reuse library was automated, and we can construct the object-oriented reuse library with the extendibility and relationship about the reuse components. Also the our process is visualized through the browse hierarchy of the retrieval environment, and the retrieval system is integrated to the reuse system CARS 2.1.

  • PDF

Exploring Convergence Fields of Safety Technology Using ARM-Based Patent Co-Classification Analysis (공통특허분류 분석을 활용한 안전기술융합분야 탐색 : Association Rule Mining(ARM) 접근법)

  • Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.88-95
    • /
    • 2017
  • As the safety fields are expanding to a variety of industrial fields, safety technology has been developed by convergence between industrial safety fields such as mechanics, ergonomics, electronics, chemistry, construction, and information science. As the technology convergence is facilitating recently advanced safety technology, it is important to explore the trends of safety technology for understanding which industrial technologies have been integrated thus far. For studying the trends of technology, the patent is considered one of the useful sources that has provided the ample information of new technology. The patent has been also used to identify the patterns of technology convergence through various quantitative methods. In this respect, this study aims to identify the convergence patterns and fields of safety technology using association rule mining(ARM)-based patent co-classification(co-class) analysis. The patent co-class data is especially useful for constructing convergence network between technological fields. Through linkages between technological fields, the core and hub classes of convergence network are explored to provide insight into the fields of safety technology. As the representative method for analyzing patent co-class network, the ARM is used to find the likelihood of co-occurrence of patent classes and the ARM network is presented to visualize the convergence network of safety technology. As a result, we find three major convergence fields of safety technology: working safety, medical safety, and vehicle safety.

Technical Development for Extraction of Discontinuities in Rock Mass Using LiDAR (LiDAR를 이용한 암반 불연속면 추출 기술의 개발 현황)

  • Lee, Hyeon-woo;Kim, Byung-ryeol;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Rock mass classification for construction of underground facilities is essential to secure their stabilities. Therefore, the reliable values for rock mass classification from the precise information on rock discontinuities are most important factors, because rock mass discontinuities can affect exclusively on the physical and mechanical properties of rock mass. The conventional classification operation for rock mass has been usually performed by hand mapping. However, there have been many issues for its precision and reliability; for instance, in large-scale survey area for regional geological survey, or rock mass classification operation by non-professional engineers. For these reasons, automated rock mass classification using LiDAR becomes popular for obtaining the quick and precise information. But there are several suggested algorithms for analyzing the rock mass discontinuities from point cloud data by LiDAR scanning, and it is known that the different algorithm gives usually different solution. Also, it is not simple to obtain the exact same value to hand mapping. In this paper, several discontinuity extract algorithms have been explained, and their processes for extracting rock mass discontinuities have been simulated for real rock bench. The application process for several algorithms is anticipated to be a good reference for future researches on extracting rock mass discontinuities from digital point cloud data by laser scanner, such as LiDAR.

Visualization of Tunneling Using a BIM-based 3D Tunnel Model (BIM 기반 3D 터널 모델 가시화에 관한 연구)

  • Yoo, Wan-Kyu;Kim, Jinhwan;Zheng, Xiumei;Kim, Jeong-Heum;Gi, Sang-bok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.395-401
    • /
    • 2015
  • An investigation of the tunnel face, as well as related measurement data collected during tunneling, is necessary for rock classification and to determine tunnel stability and the cost efficiency of tunneling. However, systematic management and efficient use of such data have yet to be successfully implemented domestically, and the number of experts in this field in Korea is limited. Thus, measures to develop and implement systematic management and effective use of data and expertise are urgently needed. This study aimed to develop measures to efficiently provide online tunnel design and construction data using a building information model (BIM)-based data visualization approach, based on an integrated 3D tunnel model generation module and a web viewer module. The development technology was verified through ○○ tunnel design and construction. Directions for future study and system improvement are proposed.

Joint Reasoning of Real-time Visual Risk Zone Identification and Numeric Checking for Construction Safety Management

  • Ali, Ahmed Khairadeen;Khan, Numan;Lee, Do Yeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.313-322
    • /
    • 2020
  • The recognition of the risk hazards is a vital step to effectively prevent accidents on a construction site. The advanced development in computer vision systems and the availability of the large visual database related to construction site made it possible to take quick action in the event of human error and disaster situations that may occur during management supervision. Therefore, it is necessary to analyze the risk factors that need to be managed at the construction site and review appropriate and effective technical methods for each risk factor. This research focuses on analyzing Occupational Safety and Health Agency (OSHA) related to risk zone identification rules that can be adopted by the image recognition technology and classify their risk factors depending on the effective technical method. Therefore, this research developed a pattern-oriented classification of OSHA rules that can employ a large scale of safety hazard recognition. This research uses joint reasoning of risk zone Identification and numeric input by utilizing a stereo camera integrated with an image detection algorithm such as (YOLOv3) and Pyramid Stereo Matching Network (PSMNet). The research result identifies risk zones and raises alarm if a target object enters this zone. It also determines numerical information of a target, which recognizes the length, spacing, and angle of the target. Applying image detection joint logic algorithms might leverage the speed and accuracy of hazard detection due to merging more than one factor to prevent accidents in the job site.

  • PDF

Integrating a Machine Learning-based Space Classification Model with an Automated Interior Finishing System in BIM Models

  • Ha, Daemok;Yu, Youngsu;Choi, Jiwon;Kim, Sihyun;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.60-73
    • /
    • 2023
  • The need for adopting automation technologies to improve inefficiencies in interior finishing modeling work is increasing during the Building Information Modeling (BIM) design stage. As a result, the use of visual programming languages (VPL) for practical applications is growing. However, undefined or incorrect space designations in BIM models can hinder the development of automated finishing modeling processes, resulting in erroneous corrections and rework. To address this challenge, this study first developed a rule-based automated interior finishing detailing module for floors, walls, and ceilings. In addition, an automated space integrity checking module with 86.69% ACC using the Multi-Layer Perceptron (MLP) model was developed. These modules were integrated into a design automation module for interior finishing, which was then verified for practical utility. The results showed that the automation module reduced the time required for modeling and integrity checking by 97.6% compared to manual work, confirming its utility in assisting BIM model development for interior finishing works.