• Title/Summary/Keyword: Integrase

Search Result 63, Processing Time 0.02 seconds

Co-occurrence Analyses of Antibiotic Resistance Genes and Microbial Community in Human and Livestock Animal Feces (사람 및 가축 유래 분변 미생물 군집과 항생제 내성 유전자 간 상관 관계에 대한 연구)

  • Jiwon Jeong;Aprajita Bhandari;Tatsuya Unno
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.335-343
    • /
    • 2022
  • BACKGROUND: Antibiotics used in animal husbandry for disease prevention and treatment have resulted in the rapid progression of antibiotic resistant bacteria which can be introduced into the environment through livestock feces/manure, disseminating antibiotic resistant genes (ARGs). In this study, fecal samples were collected from the livestock farms located in Jeju Island to investigate the relationship between microbial communities and ARGs. METHODS AND RESULTS: Illumina MiSeq sequencing was applied to characterize microbial communities within each fecal sample. Using quantitative PCR (qPCR), ten ARGs encoding tetracycline resistance (tetB, tetM), sulfonamide resistance (sul1, sul2), fluoroquinolone resistance (qnrD, qnrS), fluoroquinolone and aminoglycoside resistance (aac(6')-Ib), beta-lactam resistance (blaTEM, blaCTX-M), macrolide resistance (ermC), a class 1 integronsintegrase gene (intI1), and a class 2 integrons-integrase gene (intI2) were quantified. The results showed that Firmicutes and Bacteroidetes were dominant in human, cow, horse, and pig groups, while Firmicutes and Actinobacteria were dominant in chicken group. Among ARGs, tetM was detected with the highest number of copies, followed by sul1 and sul2. Most of the genera belonging to Firmicutes showed positive correlations with ARGs and integron genes. There were 97, 34, 31, 25, and 22 genera in chicken, cow, pig, human, and horse respectively which showed positive correlations with ARGs and integron genes. In network analysis, we identified diversity of microbial communities which correlated with ARGs and integron genes. CONCLUSION(S): In this study, antibiotic resistance patterns in human and livestock fecal samples were identified. The abundance of ARGs and integron genes detected in the samples were associated with the amount of antibiotics commonly used for human and livestocks. We found diverse microbial communities associated with antibiotics resistance genes in different hosts, suggesting that antibiotics resistance can disseminate across environments through various routes. Identifying the routes of ARG dissemination in the environment would be the first step to overcome the challenge of antibiotic resistance in the future.

Effect of SeaR gene on virginiamycins production in Streptomyces virginiae (희소방선균 SeaR 유전자가 Streptomyces virginiae의 virginiamycins 생산에 미치는 영향)

  • Ryu, Jae-Ki;Kim, Hyun-Kyung;Kim, Byung-Won;Kim, Dong-Chan;Lee, Hyeong-Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.256-262
    • /
    • 2015
  • In order to study the effect of the receptor protein (SeaR), which is isolated from Saccharopolyspora erythraea, we introduced the SeaR gene to Streptomyces virginiae as host strains. An effective transformation procedure for S. virginiae was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP, and $ermEp^{\ast}$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. virginiae by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Transformants of S. virginiae containing the SeaR gene were confirmed by PCR and transcriptional expression of the SeaR gene in the transformants was analyzed by RT-PCR, respectively. And, we examined the production time of virginiamycins in the culture media of both the transformants and the wild type. The production time of virginiamycins in the wild type and transformants was the same. When 100 ng/ml of synthetic $VB-C_6$ was added to the state of 6 or 8 hour cultivation of wild type and transformants, respectively, the virginiamycins production was induced, meaning that the virginiamycins production in the wild type was detected 2 h early than transformants. From these results, SeaR expression was also affected to virginiamycins production in transformants derived from S. virginiae. In this study, we showed that the SeaR protein worked as a repressor in transformants.

Functional analysis of seaR protein identified from Saccharopolyspora erythraea (희소방선균의 seaR 단백질 발현을 통한 기능 분석)

  • Ryu, Jae Ki;Kwon, Pil-Seung;Lee, Hyeong Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • Secondary metabolism in actinomycetes has been known to be controlled by a small molecule, ${\gamma}$-butyrolactone autoregulator, the binding of which to each corresponding receptor leads to the regulation of the transcriptional expression of the secondary metabolites. We expected that expression of an autoregulator receptor or a pleiotropic regulator in a non-host was to be gained insight of effective production of new metabolic materials. In order to study the function of the receptor protein (seaR), which is isolated from Saccharopolyspora erythraea, we introduced the seaR gene to Streptomyces coelicolor A3(2) as host strains. An effective transformation procedure for S. coelicolor A3(2) was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP and $ermEp^*$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. coelicolor A3(2) by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Exconjugant of S. coelicolor A3(2) containing the seaR gene was confirmed by PCR and transcriptional expression of the seaR gene in the transformant was analyzed by RT-PCR. In case of S. coelicolor A3(2), a phenotype microarray was used to analyze the phenotype of transformant compared with wild type by seaR expression. After that, in order to confirm the accuracy of the results obtained from the phenotype microarray, an antimicrobial susceptibility test was carried out. This test indicated that sensitivity of the transformant was higher than wild type in tetracycline case. These results indicated that some biosynthesis genes or resistance genes for tetracycline biosynthesis in transformant might be repressed by seaR expression. Therefore, subsequent experiments, analysis of transcriptional pattern of genes for tetracycline production or resistance, are needed to confirm whether biosynthesis genes or resistance genes for tetracycline are repressed or not.