• Title/Summary/Keyword: Integral imaging system

Search Result 103, Processing Time 0.041 seconds

Reconstruction Method of Spatially Filtered 3D images in Integral Imaging based on Parallel Lens Array (병렬렌즈배열 기반의 집적영상에서 공간필터링된 3차원 영상 복원)

  • Jang, Jae-Young;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.659-666
    • /
    • 2015
  • In this paper, we propose a novel reconstruction method of spatially filtered 3D images in integral imaging based on parallel lens array. The parallel lens array is composed of two lens arrays, which are positioned side by side through longitudinal direction. Conventional spatial filtering method by using convolution property between periodic functions has drawback that is the limitation of the position of target object. this caused the result that the target object should be located on the low depth resolution region. The available spatial filtering region of the spatial filtering method is depending on the focal length and the number of elemental lens in the integral imaging pickup system. In this regard, we propose the parallel lens array system to enhance the available spatial filtering region and depth resolution. The experiment result indicate that the proposed method outperforms the conventional method.

Resolution Enhancement for Far Objects by Using Direct Pixel Mapping Method in Curving-Effective Integral Imaging (커브형 집적영상에서 다이렉트 픽셀매핑 방법을 이용한 먼 거리 물체의 해상도 향상)

  • Chung, Han-Gu;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2664-2669
    • /
    • 2011
  • We proposed a new method to improve the resolution of far object image in curving effective integral imaging system. Basically, the curving effective integral imaging(CEII) system can improve the resolution of the reconstructed images with an increased sampling rate of elemental images. However, in the case when an object located far from the lenslet array is picked up, the low resolution of the reconstructed images of the far object has been a primary problem because the sampling rate is very low. In order to solve this drawback, by using the direct pixel mapping(DPM) method the EIA picked up from a far object is transformed into a new EIA that virtually looks like the EIA picked up from the object originally located close to the lenslet array. From this new EIA, highly resolution-enhanced images of far object could be reconstructed in the CEII system. To show the feasibility of the proposed method, simulation results are compared with the conventional method.

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.

Compression of Elemental Images Using Block Division in 3D Integral Imaging (3D 집적 영상에서 영역 분할을 이용한 요소 영상의 압축 기법)

  • Kang, Ho-Hyun;Shin, Dong-Hak;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.297-303
    • /
    • 2009
  • Integral imaging is a well-known 3D image recording and display technique. The huge size of integral imaging data requires a compression scheme to store and transmit 3D scenes. In the conventional compression scheme, the data amount of elemental images depends on the various recording condition such as the positional location of a 3D object, the illumination and specification of the lenslet array even if an identical pickup system is used. In this paper, to reduce the dependence of the image characteristics of elemental images on the pickup conditions, a compression scheme using block division on the elemental image of integral imaging is proposed. The proposed scheme provides an improved compression ratio by considering the local similarity of elemental images picked up from three-dimensional objects according to a positional location. To test the proposed scheme, various elemental images are picked up and a compression process is then carried out u sing a standard MPEG-4. Based on compression ratio results, the proposed compression scheme is improved by approximately 9% compared with the conventional compression method.

3D/2D convertible color display based on modified integral imaging

  • Kim, Yun-Hee;Cho, Seong-Woo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1318-1321
    • /
    • 2006
  • We describe the 3D/2D convertible color display based on modified integral imaging. In the proposed method a color liquid crystal display panel is used as a transmission-type display panel and enables a color 3D/2D convertible display system. The principle of the proposed method will be explained and methods to overcome the color dispersion problem will be discussed also.

  • PDF

Analysis of Integral Imaging with Multiple Birefringence Lens Arrays Using Jones Matrix

  • Xu, Kai;Hwang, Yong-Seok;Lee, Sang-Shin
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.274-275
    • /
    • 2009
  • An integral imaging system resorting to multiple birefringence lens arrays using Jones Matrix was analyzed and implemented. Each birefringence lens array was produced by placing a liquid crystal layer on a conventional lens array. Its depth of field was proved to be extended theoretically.

  • PDF

Recognition of partially occluded 3-D targets from computationally reconstructed integral images

  • Lee, Keong-Jin;Li, Gen;Lee, Guen-Sik;Hwang, Dong-Choon;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.761-762
    • /
    • 2008
  • In this paper, a novel approach for robust recognition of partially occluded 3-D target objects from computationally reconstructed integral images is proposed. The occluding object noises are selectively removed from the picked-up elemental images and performance of the proposed integral imaging-based 3-D target recognition system can be improved.

  • PDF

Integral-floating Display with 360 Degree Horizontal Viewing Angle

  • Erdenebat, Munkh-Uchral;Baasantseren, Ganbat;Kim, Nam;Kwon, Ki-Chul;Byeon, Jina;Yoo, Kwan-Hee;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • A three-dimensional integral-floating display with 360 degree horizontal viewing angle is proposed. A lens array integrates two-dimensional elemental images projected by a digital micro-mirror device, reconstructing three-dimensional images. The three-dimensional images are then relayed to a mirror via double floating lenses. The mirror rotates in synchronization with the digital micro-mirror device to direct the relayed three-dimensional images to corresponding horizontal directions. By combining integral imaging and the rotating mirror scheme, the proposed method displays full-parallax three-dimensional images with 360 degree horizontal viewing angle.

Synthesis method of elemental images from Kinect images for space 3D image (공간 3D 영상디스플레이를 위한 Kinect 영상의 요소 영상 변환방법)

  • Ryu, Tae-Kyung;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.162-163
    • /
    • 2012
  • In this paper, we propose a synthesis method of elemental images from Kinect images for 3D integral imaging display. Since RGB images and depth image obtained from Kinect are not able to display 3D images in integral imaging system, we need transform the elemental images in integral imaging display. To do so, we synthesize the elemental images based on the geometric optics mapping from the depth plane images obtained from RGB image and depth image. To show the usefulness of the proposed system, we carry out the preliminary experiments using the two person object and present the experimental results.

  • PDF

Three-dimensional/two-dimensional convertible integral imaging display system using an active mask (동적 마스크를 이용한 3D/2D 변환 집적영상 디스플레이 시스템)

  • Oh, Yongseok;Shin, Donghak;Lee, Byung-Gook;Jeong, Shin-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3055-3062
    • /
    • 2014
  • 3D integral imaging technique with an active mask is capable of displaying real 3D images with high resolution in space. In this paper, we present a novel 3D/2D convertible integral imaging display system using an active mask. For the proposed method, the principles of 3D, 2D, and 3D/2D composed operations are explained according to the displayed images through two LCD panels. In 3D mode, the elemental images and the mask images are displayed in two display panels. On the other hand, the light source image and 2D image are displayed in 2D mode. In addition, 3D/2D mode is obtained using the spatial separation for 3D and 2D modes. To show the feasibility of the proposed method, we carry out the preliminary experiments and present the optical results.