• Title/Summary/Keyword: Integral imaging microscope

Search Result 3, Processing Time 0.018 seconds

Characteristics of integral imaging microscope using point light source array

  • Lim, Young-Tae;Park, Jae-Hyeung;Kwon, Ki-Chul;Kim, Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1354-1356
    • /
    • 2009
  • In this paper, we explained characteristics of integral imaging microscope using point light source. To display the bio-medical information, which is captured as a form of the elemental images, using autostereoscopic displays, the characteristics analysis of three-dimensional information is required. For integral imaging microscope using point light source array, the elemental image capturing configuration has to satisfy a specific condition. We explain the condition to capture the elemental images and show the experimental results.

  • PDF

Three-dimensional Display of Microscopic Specimen using Integral Imaging Microscope and Display (집적 영상 현미경과 집적 영상 디스플레이를 이용한 미세시료의 3차원 영상 재생)

  • Lim, Young-Tae;Park, Jae-Hyeung;Kwon, Ki-Chul;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1311-1319
    • /
    • 2009
  • Microscopic specimen was captured by an integral imaging microscope and displayed as a three-dimensional image by an integral imaging display system. We applied the generalized relationship between pickup and display using two different lens arrays to our integral imaging microscope and display system. In order to display three-dimensional microscopic image, scaling of the captured elemental images is required. We analyzed the effect of the scaling coefficient in terms of the distortion of the displayed three-dimensional image and the loss of the captured elemental images. In our experiment, microscopic specimen is picked up by an integral imaging microscope having $125{\mu}m$ elemental lens pitch and displayed as three-dimensional image by an integral imaging display system having 1mm elemental lens pitch. The scaling coefficient was chosen to minimize the elemental image loss.

Surface Imaging of Barley Aleurone Cell by Atomic Force Microscopy

  • Kim, Tae-Wan;Huh, Kwang-Woon;Kim, Seung-Hwan;Ku, Hyun-Hwoi;Lee, Byung-Moo;Kim, Jae-Yoon;Seo, Yong-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • To observe and analysis ultra-microscopically barley aleurone cell surface, atomic force microscope (AFM) was used. Seed coat of early maturing germplasm, eam9, was dehulled and scanned by non-contact mode. We have obtained the high resolution topographic 3-dimensional image of barley aleurone layer with high resolution. These images showed the membrane proteins in barley aleurone cell. One channel protein and numerous peripheral or integral proteins were detected in a area of 100 $\mu\textrm{m}^2$. Furthermore, we found that their widths were ranged from 50 to 750nm and lengths from 0 to 66 $\mu\textrm{m}$. The thickness of aleurone layer was measured by scanning electron microscope. The thickness at early developmental stage was about 16 and then the aleurone cell enlarged upto 57 $\mu\textrm{m}$${\mu}{\textrm}{m}$ at least until 42 days after anthesis. In this study, we firstly reported on the ultrastructural AFM analysis of living aleurone cell as a biological specimen. It was clearly suggested that AFM will become an powerful tool for probing both the structural properties of biological samples.