• 제목/요약/키워드: Integral Transform

Search Result 344, Processing Time 0.027 seconds

Ranking Decision on Assessment Indicator of Natural Resource Conservation Area Using Fuzzy Theory - Focused on Site Selection for the National Trust - (퍼지이론을 이용한 자연자원 보전지역의 평가지표 순위 결정 - 내셔널 트러스트 후보지 선정을 중심으로 -)

  • You Ju-Han;Jung Sung-Gwan;Park Kyung-Hun;Oh Jeong-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.4 s.111
    • /
    • pp.97-107
    • /
    • 2005
  • This study was carried out to construct accurate and scientific system of assessment indicators in selection of National Trust conservation areas, which was new concept of domestic environment movement and offer the raw data of new analytic method by introducing the fuzzy theory and weight for overcoming the uncertainty of ranking decision. To transform the Likert's scale granted to assessment indicators into the type of triangular fuzzy number(a, b, c), there was conversion to each minimum(a), median(b), and maximum(c) in applying membership function, and in using the center of gravity and eigenvalue, there was to decide the ranking. The rankings of converted values applied a mean importance and weight were confirmed that they were generally changed. Therefore, the ranking decision was better to accomplish objective and rational ranking decision by applying weight that was calculated in grouping of indicator than to judge the singular concept and to be useful in assessment of diverse National Trust site. In the future, because AHP, which was general method of calculating weight, was lacked, there was to understand the critical point to fix a pertinent weight, and to carry out the study applying engineering concept like fuzzy integral using $\lambda-measure$.

Radiation Characteristics of Dielectric-Coated Conducting Cylinder Loaded with Periodic Corrugation (주기적인 구형격자로 로딩된 유전체 코팅된 도체 실린더의 복사 특성)

  • Kim, Joong-Pyo;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.388-402
    • /
    • 2000
  • The radiation characteristics of leaky antenna from the dielectric-coated conducting cylinder with periodic corrugation are investigated theoretically for the infinite and finite periodic structures. For the infinite periodic structure, mode-matching method is applied. The integral equation is derived for the finite periodic structure by use of the Fourier transform and mode expansion and a simultaneous linear equation is obtained. The influences of the corrugation slot width, corrugation depth, dielectric thickness, cylinder radius, and finite corrugation number on the radiation characteristics (leakage constant, phase constant, and radiation pattern) are investigated. The results of the finite periodic corrugations are compared with those of the infinite extent structure and good agreement is found. To reduce high side lobe levels of the uniform finite periodic structure, tapering process on the beginning and end section of antenna and nonuniform quasi-period slot arrays are considered. Especially, for the corrugation period, width and depth used for a corrugated surface wave antenna, through the proper tapering process, end-fire radiation pattern with reduced side lobe levels is given.

  • PDF

Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models

  • Quan, Yong;Fu, Guo Qiang;Huang, Zi Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.269-285
    • /
    • 2020
  • The statistical characteristics of typhoon wind speed records tend to have a considerable time-varying trend; thus, the stationary wind model may not be appropriate to estimate the wind characteristics of typhoon events. Several nonstationary wind speed models have been proposed by pioneers to characterize wind characteristics more accurately, but comparative studies on the applicability of the different wind models are still lacking. In this study, three landfall typhoons, Ampil, Jongdari, and Rumbia, recorded by ultrasonic anemometers atop the Shanghai World Financial Center (SWFC), are used for the comparative analysis of stationary and nonstationary wind characteristics. The time-varying mean is extracted with the discrete wavelet transform (DWT) method, and the time-varying standard deviation is calculated by the autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model. After extracting the time-varying trend, the longitudinal wind characteristics, e.g., the probability distribution, power spectral density (PSD), turbulence integral scale, turbulence intensity, gust factor, and peak factor, are comparatively analyzed based on the stationary wind speed model, time-varying mean wind speed model and time-varying standard deviation wind speed model. The comparative analysis of the different wind models emphasizes the significance of the nonstationary considerations in typhoon events. The time-varying standard deviation model can better identify the similarities among the different typhoons and appropriately describe the nonstationary wind characteristics of the typhoons.

Verification on the Calculated Geoelectric Field on Power Grid during Geomagnetic Disturbances (지자기 교란으로 인한 전력망 유도전기장 예상값 검증)

  • Park, Sung Won;Yoo, Chung-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.94-100
    • /
    • 2015
  • Coronal mass ejection (CME) released due to solar flare explosion cause geomagnetic disturbance. The induced current by massive geomagnetic disturbance can cause damage to the transformer. The calculated geoelectric field is a major parameter of the geomagnetically induced current (GIC). The method applying a Fourier transform has a high accuracy but it needs all data measured for 24 hours. And the other method applying a integral equation can calculate in real time but it requires to check an accuracy. To reduce the gap between the calculated results of two methods, it adjusts the integration section. As a result, the correlation between two calculated geoelectric fields is high, and the event time and direction of the calculated current is the same as that of the measured current, and it's accuracy rate is above 92 percent.

Solution of Transmission Lines Using Laguerre Polynomials in Time Domain BLT Equations (Laguerre 다항식을 이용한 전송 선로의 시간 영역 BLT 방정식 해석)

  • Lee, Youn-Ju;Chung, Young-Seek;So, Joon-Ho;Shin, Jin-Wo;Cheon, Chang-Yul;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1023-1029
    • /
    • 2007
  • In this paper, we propose the method to solve the BLT equations using Laguerre polynomials in time domain. The solution of BLT equations is obtained by recursive, differential and integral properties of Laguerre polynomials. The verification of the proposed method is tested by applying it to the two-wired transmission line with resistors and capacitors, which is illuminated by the electromagnetic plane wave pulse. And the result is compared with the corresponding transient responses obtained from inverse fast Fourier transform(IFFT) of the frequency domain solutions of BLT equations.

An Accurate Moving Distance Measurement Using the Rear-View Images in Parking Assistant Systems (후방영상 기반 주차 보조 시스템에서 정밀 이동거리 추출 기법)

  • Kim, Ho-Young;Lee, Seong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1271-1280
    • /
    • 2012
  • In the recent parking assistant systems, finding out the distance to the object behind a car is often performed by the range sensors such as ultrasonic sensors, radars. However, the installation of additional sensors on the used vehicle could be difficult and require extra cost. On the other hand, the motion stereo technique that extracts distance information using only an image sensor was also proposed. However, In the stereo rectification step, the motion stereo requires good features and exacts matching result. In this paper, we propose a fast algorithm that extracts the accurate distance information for the parallel parking situation using the consecutive images that is acquired by a rear-view camera. The proposed algorithm uses the quadrangle transform of the image, the horizontal line integral projection, and the blocking-based correlation measurement. In the experiment with the magna parallel test sequence, the result shows that the line-accurate distance measurement with the image sequence from the rear-view camera is possible.

Analysis of Hyperbolic Heat Conduction in a Thin Film (박막에서 쌍곡선형 열전도 방정식에 의한 열전도 해석)

  • 정우남;이용호;조창주
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.540-545
    • /
    • 1999
  • The classical Fourier heat conduction equation is invalid at temperatures near absolute zero or at very early times in highly transient heat transfer processes. In such situations, a hyperbolic equation model for heat conduction based on the modified Fourier law is introduced because the wave nature of heat propagation becomes dominant. The Fourier model and the hyperbolic model for heat conduction are analyzed by using the Green's function technique together with the integral transform. Analytical expressions for the heat flux and temperature distributions in a finite slab subjected to a periodic surface heating at one of its surfaces are presented and the results obtained from each model are compared with each other. The thermal wave implied b the hyperbolic model is shown to travel through a medium and to reflect back toward the origin at the other insulated surface. On the other hand, the heat by the Fourier model propagates at an infinite speed instantaneously after a thermal disturbance is felt throughout the medium.

  • PDF

On the Removal of Irregular Frequencies in the Prediction of Ship Motion in Waves (파랑중에서 전진동요하는 선박의 특이파수 억제에 관한 연구)

  • H.Y. Lee;D.J. Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.73-81
    • /
    • 1994
  • The source and source/dipole distribution methods using 3-dimensional panel method have been widely used for ship motion analysis. When these methods are used, large errors in the predicted hydrodynamic coefficients are introduced around the irregular frequencies caused by the resonance of imaginary internal flow. Therefore, the irregular frequencies need to be removed for an accurate prediction of ship motion. This paper adopts 3-dimensional translating and oscillating Green function derived by Wu. The adaptive integration method, stretching transform and stationary phase method are used for the calculation of the calculation of Green function and the integral equation is derived by distributing the Green function n ship surface and inner free-surface. The condition of zero normal velocity, that is, wall condition on inner free-surface has been successfully used for the removal of irregular frequencies in oscillating problems. The calculations are carried out for series 60($C_B=0.7$) vessel and the results are compared with those of other theoretical analyses and experiment.

  • PDF

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Resistance Induction by Salicylic Acid Formulation in Cassava Plant against Fusarium solani

  • Saengchan, Chanon;Phansak, Piyaporn;Thumanu, Kanjana;Siriwong, Supatcharee;Le Thanh, Toan;Sangpueak, Rungthip;Thepbandit, Wannaporn;Papathoti, Narendra Kumar;Buensanteai, Natthiya
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.212-219
    • /
    • 2022
  • Fusarium root rot caused by the soil-borne fungus Fusarium solani is one of the most important fungal diseases of cassava in Thailand, resulting in high yield losses of more than 80%. This study aimed to investigate if the exogenous application of salicylic acid formulations (Zacha) can induce resistance in cassava against Fusarium root rot and observe the biochemical changes in induced cassava leaf tissues through synchrotron radiation based on Fourier-transform infrared (SR-FTIR) microspectroscopy. We demonstrated that the application of Zacha11 prototype formulations could induce resistance against Fusarium root rot in cassava. The in vitro experimental results showed that Zacha11 prototype formulations inhibited the growth of F. solani at approximately 34.83%. Furthermore, a significant reduction in the disease severity of Fusarium root rot disease at 60 days after challenge inoculation was observed in cassava plants treated with Zacha11 at a concentration of 500 ppm (9.0%). Population densities of F. solani were determined at 7 days after inoculation. Treatment of the Zacha11 at a concentration of 500 ppm resulted in reduced populations compared with the distilled water control and differences among treatment means at each assay date. Moreover, the SR-FTIR spectral changes of Zacha11-treated epidermal tissues of leaves had higher integral areas of lipids, lignins, and pectins (1,770-1,700/cm), amide I (1,700-1,600/cm), amide II (1,600-1,500/cm), hemicellulose, lignin (1,300-1,200/cm), and cellulose (1,155/cm). Therefore, alteration in defensive carbohydrates, lipids, and proteins contributed to generate barriers against Fusarium invasion in cassava roots, leading to lower the root rot disease severity.