• Title/Summary/Keyword: Integral Imaging (II)

Search Result 8, Processing Time 0.025 seconds

Photon Counting Linear Discriminant Analysis with Integral Imaging for Occluded Target Recognition

  • Yeom, Seok-Won;Javidi, Bahram
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2008
  • This paper discusses a photon-counting linear discriminant analysis (LDA) with computational integral imaging (II). The computational II method reconstructs three-dimensional (3D) objects on the reconstruction planes located at arbitrary depth-levels. A maximum likelihood estimation (MLE) can be used to estimate the Poisson parameters of photon counts in the reconstruction space. The photon-counting LDA combined with the computational II method is developed in order to classify partially occluded objects with photon-limited images. Unknown targets are classified with the estimated Poisson parameters while reconstructed irradiance images are trained. It is shown that a low number of photons are sufficient to classify occluded objects with the proposed method.

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.

Performance Analysis of Compression Techniques Using DCT and DWT on Elemental Images in 3D Integral Imaging (3 차원 집적영상에서의 요소영상 압축을 위한 DCT 및 DWT 성능분석)

  • Muniraj, Inbarasan;Moon, In-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.340-342
    • /
    • 2012
  • Integral Imaging (II) is an attractive technique for three-dimensional (3D) image, video display and recording. Inherently, the high resolution II requires an enormous amount of data for storing and transmitting of 3D scenes. Compression techniques attempt to evade this issue. In this study, we made a comparative performance analysis of popular transforming/compression techniques such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT) in order to compress 3D-II. The standard baseline JPEG (Joint Photographic Experts Group) using DCT and JPEG 2000 using DWT methods were manipulated in our experiments. In our analysis, we have shown that the DWT based JPEG 2000 compression methodology could be a good alternative for 3D-II.

  • PDF

Elemental image compatibility between parallax generation and Integral Imaging system for three-dimensional display

  • Ser, Jang-Il;Kang, Keun-Ho;Seo, Kwang-Bum;Cha, Sung-Do;Shin, Seung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1569-1574
    • /
    • 2006
  • We have studied elemental image compatibility between integral imaging(II) and parallax generation(PG) system for three-dimensional display. The elemental images of PG can be obtained by recombination of the elemental images picked up in II system. The theoretical verification and the experimental results show that the elemental images of PG are in correspondence with the elemental images of II system with proper transformation conditions.

  • PDF

Generation scheme of elemental images for full-direction-curved integral imaging (전방향 커브형 집적 영상에서의 요소 영상의 제작 방법)

  • Shin Dong-Hak;Cho Byung-Chul;Kim Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.905-909
    • /
    • 2006
  • Recently various types of curved integral imaging system have been reported for improvement of viewing angle. However, the optical implementation has been limited to only unidirectional system. In this paper, we propose a curved integral imaging (CII) system with additional use of a large-aperture ten in conventional II system and explain a generation scheme of elemental images in the proposed system. The proposed system provides full-directional curvature effect and has simple structure due to the use of well-fabricated flat devices. For the full-directional-curved II system, we perform my analysis based on Johns matrix and synthesize novel elemental images. To show the usefulness of synthesized elemental images, preliminary experiments were performed and some experimental results were presented.

PROTOTYPE OF HIGH RESOLUTION 3D DISPLAY USING TWO LENS ARRAYS AND DEPTH SAMPLING

  • Takeichi, Akira;Yendo, Tomohiro;Tanimoto, Masayuki;Fujii, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.557-561
    • /
    • 2009
  • This paper presents a prototype of high resolution 3D display with a new principle. We have proposed a new 3D display which has the features of both Integral Imaging (II) and volumetric display. The proposed display consists of two lens arrays and a thin volumetric display. When the viewer watches a thin volumetric display through two lens array, he can perceive a thick 3D image. In other words the two lens arrays can play a role of a convex lens which has a large diameter as a amplification of a depth. The advantage of the proposed display is that it has higher resolution than II and it is smaller than volumetric display with a large convex lens. In this paper, we show a detail of a prototype 3D display. We took various errors into consideration when we simulated 3D display and we found suitable lenses parameter from the simulation result. Then we confirm that the prototype will be able to reconstruct 3D images.

  • PDF

Occluded Object Reconstruction and Recognition with Computational Integral Imaging (집적 영상을 이용한 가려진 표적의 복원과 인식)

  • Lee, Dong-Su;Yeom, Seok-Won;Kim, Shin-Hwan;Son, Jung-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.270-275
    • /
    • 2008
  • This paper addresses occluded object reconstruction and recognition with computational integral imaging (II). Integral imaging acquires and reconstructs target information in the three-dimensional (3D) space. The reconstruction is performed by averaging the intensities of the corresponding pixels. The distance to the object is estimated by minimizing the sum of the standard deviation of the pixels. We adopt principal component analysis (PCA) to classify occluded objects in the reconstruction space. The Euclidean distance is employed as a metric for decision making. Experimental and simulation results show that occluded targets are successfully classified by the proposed method.

Integral Imaging System Enabling Enhanced Depth of Field Incorporating a Birefringent Liquid Crystal Lens Array (복굴절 특성을 갖는 액정 렌즈어레이를 이용한 깊이감이 향상된 집적영상 시스템)

  • Park, Chan-Kyu;Hwang, Yong-Seok;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.394-399
    • /
    • 2008
  • An integral imaging system enabling enhanced depth of field by incorporating a pair of liquid-crystal (LC) lens arrays was proposed and demonstrated. The lens arrays exhibit two different refractive indexes depending on the light polarization. The proposed LC lens array I and II were implemented by depositing a ZLI-4119 LC and an E-7 LC, respectively, on top of a lens-array substrate in glass. When the two LC lens arrays were aligned appropriately, a birefringence was obtained for a specific light polarization in such a way that the incoming light sees different refractive indexes for them. As a result, the focal length associated with the imaging system utilizing the LC lens arrays was adaptively varied, thereby enhancing the depth of field for the image reconstruction. We have theoretically analyzed the proposed integral imaging system with the $LightTools^{(R)}$ to confirm that the focal length could be adjusted with the help of the birefringent lens array. Finally the proposed imaging system successfully reconstructed the objects. The birefringent lens array employing the ZLI-4119 LC produced a real image with the focal length of 680 mm, while the other using the E-7 LC yielded a virtual image with the focal length of -29 mm.