• 제목/요약/키워드: Integral Equation Method

검색결과 611건 처리시간 0.028초

A B-Spline Higher Order Panel Method Applied to the Radiation Wave Problem for a 2-D Body Oscillating on the Free Surface

  • Hong, D.C.;Lee, C.-S.
    • Journal of Ship and Ocean Technology
    • /
    • 제3권4호
    • /
    • pp.1-14
    • /
    • 1999
  • The improved Green integral equation using the Kelvin-type Green function in known free of irregular frequencies where the integral over the inner free surface integral is removed from the integral equation, resulting in an overdetermined integral equation. The solution of the overdetermined Green integral equation is shown identical with the solution of the improved Green integral equation Using the B-spline higher order panel method, the overdetermined equation is discretized in two different ways; one of the resulting linear system is square and the other is redundant. Numerical experiments show that the solutions of both are identical. Using the present methods, the exact values and higher derivatives of the potential at any place over the wetted surface of the body can be found with much fewer panels than low order panel method.

  • PDF

MULTIGRID METHOD FOR NONLINEAR INTEGRAL EQUATIONS

  • HOSAE LEE
    • Journal of applied mathematics & informatics
    • /
    • 제4권2호
    • /
    • pp.487-500
    • /
    • 1997
  • In this paper we introduce a multigrid method for solving the nonliear Urysohn integral equation. The algorithm is derived from a discrete resolvent equation which approximates the continuous resolvent equation of the nonlinear Urysohn integral equa-tion. The algorithm is mathematically equivalent to Atkinson's adap-tive twogrid iteration. But the two are different computationally. We show the convergence of the algorithm and its equivalence to Atkinson's adaptive twogrid iteration. in our numerical example we compare our algorithm to other multigrid methods for solving the nonliear Urysohn integral equation including the nonlinear multigrid nethod introduced by hackbush.

ON THE NUMERICAL SOLUTIONS OF INTEGRAL EQUATION OF MIXED TYPE

  • Abdou, Mohamed A.;Mohamed, Khamis I.
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.165-182
    • /
    • 2003
  • Toeplitz matrix method and the product Nystrom method are described for mixed Fredholm-Volterra singular integral equation of the second kind with Carleman Kernel and logarithmic kernel. The results are compared with the exact solution of the integral equation. The error of each method is calculated.

혼합 체적-경계 적분방정식법을 이용한 응력확대계수 계산 (Calculation of Stress Intensity Factors Using the Mixed Volume and Boundary Integral Equation Method)

  • 이정기;이형민
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1120-1131
    • /
    • 2003
  • A recently developed numerical method based on a mixed volume and boundary integral equation method is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. Firstly, it should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Secondly, this method takes full advantage of the capabilities developed in FEM and BIEM. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and volume integral equation method. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

A Regularization-direct Method to Numerically Solve First Kind Fredholm Integral Equation

  • Masouri, Zahra;Hatamzadeh, Saeed
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.869-881
    • /
    • 2020
  • Most first kind integral equations are ill-posed, and obtaining their numerical solution often requires solving a linear system of algebraic equations of large condition number, which may be difficult or impossible. This article proposes a regularization-direct method to numerically solve first kind Fredholm integral equations. The vector forms of block-pulse functions and related properties are applied to formulate the direct method and reduce the integral equation to a linear system of algebraic equations. We include a regularization scheme to overcome the ill-posedness of integral equation and obtain a stable numerical solution. Some test problems are solved using the proposed regularization-direct method to illustrate its efficiency for solving first kind Fredholm integral equations.

Elastodyamic analysis of torsion of shaft of revolution by line-loaded integral equation method

  • Yun, Tian Quan
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.457-466
    • /
    • 1998
  • The dynamic response of an elastic torsion shaft of revolution is analysed by the Line-Loaded Integral Equation Method (LLIEM). A "Dynamic Point Ring Couple" (DPRC) is used as a fictitious fundamental load and is distributed in an elastic space along the axis of the shaft outside the shaft occupation. According to the boundary condition, our problem is reduced to a 1-D Fredholm integral equation of the first kind, which is simpler for solving than that of a 2-D singular integral equation of the same kind obtanied by Boundary Element Method (BEM), for steady periodically varied loading. Numerical example of a shaft with quadratic generator under sinusoidal type of torque is given. Formulas for stresses and dangerous frequency are mentioned.

축대칭 경계적분법에 의한 항공기 가스터빈 로터디스크 구조해석에 관한 연구 (A Study on Structural Analysis for Aircraft Gas Turbine Rotor Disks Using the Axisymmetric Boundary Integral Equation Method)

  • 공창덕;정석주
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2524-2539
    • /
    • 1996
  • A design process and an axisymmetric boundary integral equation method for precise structural analysis of the aircraft gas turbine rotor disk were developed. This axisymmetric boundary integral equation method for stress and steady-state thermal analysis was improved in solution accuracy by appling an implicit technique for Cauchy principal value evaluation, a subelement technique for weak singular integral evaluation and a double exponentical integral technoque for internal point solution near boundary surfaces. Stresses, temperatures, low cycle fatigue lifes and critical speeds for the turbine rotor disk of the thrust 1421 N class turbojet engine were analysed in a pratical calculation model problem.

A NUMERICAL METHOD FOR SOLVING THE NONLINEAR INTEGRAL EQUATION OF THE SECOND KIND

  • Salama, F.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제7권2호
    • /
    • pp.65-73
    • /
    • 2003
  • In this work, we use a numerical method to solve the nonlinear integral equation of the second kind when the kernel of the integral equation in the logarithmic function form or in Carleman function form. The solution has a computing time requirement of $0(N^2)$, where (2N +1) is the number of discretization points used. Also, the error estimate is computed.

  • PDF

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.