• Title/Summary/Keyword: Integer linear programming

Search Result 256, Processing Time 0.028 seconds

An Algorithm for a Cardinality Constrained Linear Programming Knapsack Problem (선수제약 선형배낭문제의 해법연구)

  • 원중연
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.137-142
    • /
    • 1996
  • An algorithm for solving the cardinality constrained linear programming knapsack problem is presented. The algorithm has a convenient structure for a branch-and-bound approach to the integer version, especially to the 0-1 collapsing knapsack problem. A numerical example is given.

  • PDF

Coverage Maximization in Environment Monitoring using Mobile Sensor Nodes (이동센서노드를 이용한 환경감시 시스템에서의 커버리지 최대화)

  • Van Le, Duc;Yoon, Seokhoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.116-119
    • /
    • 2015
  • In this paper we propose an algorithm for environment monitoring using multiple mobile sensor (MS) nodes. Our focus is on maximizing sensing coverage of a group of MS nodes for monitoring a phenomenon in an unknown and open area over time. In the proposed algorithm, MS nodes are iteratively relocated to new positions at which a higher sensing coverage can be obtained. We formulated an integer linear programming (ILP) optimization problem to find the optimal positions for MS nodes with the objective of coverage maximization. The performance evaluation was performed to confirm that the proposed algorithm can enable MS nodes to relocate to high interest positions, and obtain a maximum sensing coverage.

  • PDF

Mixed Integer Linear Programming Model to Determine the Optimal Levels of Technical Attributes in QFD under Multi-Segment Market (다수의 마켓 세그먼트 하에서 품질기능전개 시(時) 기술특성들의 최적 값을 결정하기 위한 혼합정수계획모형)

  • Yang, Jae Young;Yoo, Jaewook
    • Korean Management Science Review
    • /
    • v.33 no.2
    • /
    • pp.75-87
    • /
    • 2016
  • Quality function deployment (QFD) is a widely adopted customer-oriented product development methodology by analyzing customer requirements. It is a main activity in QFD planning process to determine the optimal values of the technical attributes (TAs) so as to achieve the customer requirements (CRs) from the House of Quality (HoQ). In most of the previous research, all the TAs in QFD are assumed to have either continuous or discrete values. In the real world applications, the continuous TAs and the discrete TAs are often mixed in QFD. In this paper, a mixed integer linear programming model is formulated to obtain the optimal values for the continuous TAs and the discrete TAs in QFD planning as well as Branch and Bound (B and B) algorithm is proposed as the solution approach. Finally, the proposed model and solution approach are illustrated with an office chair under multi-segment market, and the sensitivity analysis is performed to study how the proposed model and its solutions respond to the variation for the two elements which are budget and CRs' weights.

Minimization of Trim Loss Problem in Paper Mill Scheduling Using MINLP (MINLP를 이용한 제지 공정의 파지 손실 최소화)

  • Na, Sung-hoon;Ko, Dae-Ho;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.392-392
    • /
    • 2000
  • This study performs optimization of paper mill scheduling using MINLP(Mixed-Integer Non-Linear Programming) method and 2-step decomposing strategy. Paper mill process is normally composed of five units: paper machine, coater, rewinder, sheet cutter and roll wrapper/ream wrapper. Various kinds of papers are produced through these units. The bottleneck of this process is how to cut product papers efficiently from raw paper reel and this is called trim loss problem or cutting stock problem. As the trim must be burned or recycled through energy consumption, minimizing quantity of the trim is important. To minimize it, the trim loss problem is mathematically formulated in MINLP form of minimizing cutting patterns and trim as well as satisfying customer's elder. The MINLP form of the problem includes bilinearity causing non-linearity and non-convexity. Bilinearity is eliminated by parameterization of one variable and the MINLP form is decomposed to MILP(Mixed-Integer Linear programming) form. And the MILP problem is optimized by means of the optimization package. Thus trim loss problem is efficiently minimized by this 2-step optimization method.

  • PDF

Analyzing the Effectiveness of Closed Season Policy Using an Integer Linear Programming (정수선형계획법을 이용한 금어기 제도의 효과 분석)

  • Cheon, Seong-Hoon;Suh, Young-Sang;Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • This study aimed to evaluate the effectiveness of closed season policy using an integer linear programming, targeting the large purse seine fishery in Korea. In the analysis, based on Cheng and Townsend(1993), fishing effort (fishing days by month) was assumed to be distributed for profit maximization of vessels and catch of immature fish was estimated. The analytical results showed that the effects of closed season policy would vary in accordance with the monthly closures in terms of fishing profits and catch of immature fish. A closed season policy by month had different effects on fishing profits and catch of immature fish by species. It implies the importance of considering seasonal changes of fish species when limiting fishing efforts with the closed season policy.

Calculating the Benefit of Distributed Combined Heat Power Generators from Avoiding a Transmission Expansion Cost by Solving a Mixed Integer Linear Programming (혼합 정수 선형 계획법 기반의 최적 경제 급전을 활용한 분산형 열병합 발전원의 송전선로 건설비용 회피 편익계산)

  • Kwon, Wook Hyun;Park, Yong-Gi;Roh, Jae Hyung;Park, Jong-Bae;Lee, Duehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.4
    • /
    • pp.513-522
    • /
    • 2019
  • We calculate the benefit of distributed combined heat power generators from avoiding a transmission expansion cost by building distributed generators near electricity demand centers. We determine a transmission expansion plan by solving a mixed integer linear problem, where we modify capacities of existing transmission lines and build new transmission lines. We calculate the benefit by comparing the sum of generation and transmission expansion costs with or without distributed generators through two simulation frames. In the first frame, for the current demand, we substitute existing distributed generators for non-distributed generators and measure an additional cost to balance the generation and demand. In the second frame, for increased future demand, we compare the cost to invest only in distributed generators to the cost to invest only in non-distributed generators. As a result, we show that the distributed generators have at least 5.8 won/kWh of the benefit from avoiding the transmission expansion cost.

Design of Mixed Integer Linear Programming Model for Strategic Location Decision -Focused on the Automotive Industry SCM- (혼합정수 계획법을 이용한 전략적 입지선정 -자동차 SCM을 중심으로-)

  • Young-Kyou HA;Su-Han Woo
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.213-228
    • /
    • 2021
  • In recent year, US government requires local investment ,unlike in the past, when import restrictions and tariff were imposed. In this situation, many companies are considering new investment in the US and entering the local market. However, research on the optimal investment plan along with the case analysis on trade regulation is extremely limited and more research needs to be conducted. Accordingly, this study aims to suggest the implications and countermeasure of the SCM and logistical perspective by studying the optimal measures for the new investment of each company due to trade regulation. As a research method, the gravity location model, Mixed Integer Linear Programming Model were used to select the optimal automobile manufacturing factory considering each state's population. This study will be implication of SCM and logistics perspective not only for companies considering new investment in the US but also for the government to conduct trade negotiations. In the future, it is expected that the US trade pressure will increase and affect Korea in many ways. Therefore, in order to cope with such difficult situation in a timely manner, continuous research considering various possibilities is needed in the future.

Optimal Design for Heterogeneous Adder Organization Using Integer Linear Programming (정수 선형 프로그래밍을 이용한 혼합 가산기 구조의 최적 설계)

  • Lee, Deok-Young;Lee, Jeong-Gun;Lee, Jeong-A;Rhee, Sang-Min
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.327-336
    • /
    • 2007
  • Lots of effort toward design optimizations have been paid for a cost-effective system design in various ways from a transistor level to RTL designs. In this paper, we propose a bit level optimization of an adder design for expanding its design space. For the bit-level optimization, a heterogeneous adder organization utilizing a mixture of carry propagation schemes is proposed to design a delay-area efficient adder which were not available in an ordinary design space. Then, we develop an optimization method based on Integer Linear Programming to search the expanded design space of the heterogeneous adder. The novelty of the Proposed architecture and optimization method is introducing a bit level reconstruction/recombination of IPs which have same functionality but different speed and area characteristics for producing more find-grained delay-area optimization.

Coefficient change of objective function not change to the basic vector make a optimum solution (최적해를 이루는 기저벡터가 변화를 초래하지 않는 목적함수계수의 변화)

  • 송필준;김정숙
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.1
    • /
    • pp.58-65
    • /
    • 2002
  • When we estimate the optimal solution satisfy the objective function and subjective equation in the integer programming, The optimal solution of the objective function Z is decided by the positive integer at extreme point or revised extreme point in the convex set. The convex set is made up the linear subjective equation. The purpose of the paper is thus to establish a stepwise optimization in the integer programming model by estimating the variation △C/sub j/ of the constant term C/sub j/ in the linear objective function, after an application of the modified Branch & Bound method.

  • PDF

A Production Schedule for Load Leveling in a Block Assembly Shop (블록조립공장의 부하평준화를 위한 생산일정계획)

  • Lee, Jae-Dong;Hong, Yu-Shin
    • IE interfaces
    • /
    • v.7 no.2
    • /
    • pp.75-85
    • /
    • 1994
  • This paper presents a production scheduling model in a block assembly shop in shipbuilding industry. In a block assembly shop, the most important performance criterion is load leveling, which balances manpower and work area utilization through the planning horizon. The problem is formulated as a mixed-integer nonlinear programming(MINLP) problem of which objective function is to optimize load leveling. The developed MINLP problem can not be solvable due to computational complexity. The MINLP problem is decomposed into two stage mixed-integer linear programming (MILP) problems to obtain a good solution, but the decomposed MILP problems are still computationally intractable because of combinatorial complexity. Therfore, a heuristic method using linear programming is proposed to solve two stage MILP problems sequentially. The proposed heuristic generates a good production schedule within a reasonable computation time, and it is easily applicable for establishing the production schedule in a block assembly shop in shipbuilding industry.

  • PDF