• Title/Summary/Keyword: Intake air temperature

Search Result 142, Processing Time 0.029 seconds

An Experimental Study on Effect of Temperature and Oxygen fraction of Intake Air on Fuel Consumption in Radiant Tube Burner (Radiant Tube 버너에 있어서 흡기 온도 및 산소분물이 연료 소모에 미치는 영향)

  • Kim Hyun-woo;Lee Kyung-Hwan;Roh Dong-Soon
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.73-81
    • /
    • 2005
  • An Experimental study was conducted to investigate the effective way for fuel consumption improvement in radiant tube burner heating system used in steel manufacturing process. To find effectiveness of increase of temperature and oxygen fraction of intake air on fuel consumption, the model radiant tube burner heating system with recuperator was designed to be able to adjust temperature and oxygen fraction of intake air, and was operated under various conditions with oxygen concentration in exhaust gas changed. The results show that burner chamber temperature was increased about $10\%$ of intake air temperature increase. so it was difficult to expect fuel consumption improvement. But only 1 or $2\%$ increase of oxygen fraction in intake air made a significant improvement in fuel consumption even though it made much NOx emissions also. Therefore, if NOx emissions is controlled under regulation with burner modification, it is expected that increase of oxygen fraction in Intake air is effective way to improve fuel consumption.

Parametric Study for Reducing NO and Soot Emissions in a DI Diesel Engine by Using Engine Cycle Simulation (직분식 디젤엔진에서 엔진 매개변수들이 NO 및 soot 배출에 미치는 영향에 대한 수치해석 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.35-44
    • /
    • 2002
  • Engine cycle simulation using a two-zone model was performed to investigate the effect of the engine parameters on NO and soot emissions in a DI diesel engine. The present model was validated against measurements in terms of cylinder pressure, BMEP, NO emission data with a 2902cc turbocharger/intercooler DI diesel engine. Calculations were made for a wide range of the engine parameters, such as injection timing, ignition delay, Intake air pressure, inlet air temperature, compression ratio, EGR. This parametric study indicated that NO and soot emissions were effectively decreased by increasing intake air pressure, decreasing inlet air temperature and increasing compression ratio. By retarding injection timing, increasing ignition delay and applying EGR. NO emission was effectively reduced, but the soot emission was increased.

The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine (직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성)

  • 이기형;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.

Fuel Injection Control of Vehicles Using Fuzzy Control Technique (퍼지 제어 기법을 이용한 차량의 연료 제어)

  • Kim, Kwang-Baek;Woo, Young-Woon;Ha, Sang-An
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1013-1018
    • /
    • 2007
  • In general, there are many sensors for fuel injection control such as an air flow sensor, an air intake temperature sensor, a cooling water temperature sensor, a throttle position sensor, and a motor position sensor. In this paper, we proposed a method for controlling the amount of fuel consumption in cars using fuzzy control technique by temperature change of an air intake temperature sensor and air-fuel ratio, the ratio of air and fuel mixture. In the proposed method, the amount of fuel injection is controlled by fuzzy membership functions and fuzzy inference rules established for air-fuel ratio, air intake temperature, and final fuel compensation, after computing air-fuel values using each amount of air intake and each amount of fuel injection. We verified that the proposed method is more efficient than conventional methods in fuel injection control from the results of the simulation program.

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

A Study on the Power and Smoke Characteristics for the Intake System Improvement using Air Conditioning System in a Diesel Vehicle (디젤 자동차의 에어컨 사용시 흡기계통 개선에 따른 출력 및 매연 특성에 관한 연구)

  • Youn, Y.C.;Kwon, K.R.;Pyeon, H.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.11-15
    • /
    • 2011
  • This study investigated the symptoms of the a reduction in output while driving on the road, or increasing of fumer out exhaust gas on inclined road while working air-conditioner in summer. Notice how the experiment in 2010, the Ministry of Environment(Chapter No. 2010-46), and how the vehicle emissions inspection was carried out. 2500cc Diesel cars used in the study were used and compare to output of engine, exhaust gas, inhalation temperature measurement Inhalation of cold air has not been supplied to all agencies when comparing the results when cold air intake temperature of the supply air-conditioning switch range control from 1 to 4, the temperature drops $98^{\circ}C$ to $78^{\circ}C$. At the momentum of switch level 4, output from 63ps to 66ps after the connection has increased 9.6 percent, the highest concentration of exhaust emissions were reduced by 42.8%. This research can contribute in part to the reduction of exhaust directly supply into the cooling air intake line, doing the output of diesel cars in the summer. In addition, construction equipment and machinery that are currently being used excluding the engine's intercooler cooling of the supply line via a separate output in the summer and help reduce exhaust emissions is expected.

Effect of Operation Condition on the Characteristics of Combustion and Exhaust Emissions in a Gasoline Fueled HCCI Diesel Engine (가솔린 균일 예혼합 압축 착화 디젤기관의 연소 및 배기 특성에 미치는 운전조건의 영향)

  • 이창식;김명윤;황석준;김대식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To from homogeneous charge before intake manifold, the premixed gasoline fuel is injected into a premixed tank by fuel injection system and the premixed gasoline fuel is ignited by direct injected diesel fuel. Experimental result shows the NOx and soot emissions are decreased linearly with the increase of premixed ratio. In the case of intake air temperature $20^{\circ}C$ with light load, the specific fuel consumptions are increased with the rise of premixed ratio and HC and CO emissions are also increased. But the intake air heating can improve the specific fuel consumption at light load condition because increased air temperature promotes the combustion of premixed mixture. In the case of high intake air temperature with high load condition, premixed fuel is auto-ignited before diesel combustion and soot emission is increased.

Air Intake Door Control for the High Air Conditioning Performance (인테이크 도어 제어를 이용한 고성능 냉난방 시스템)

  • Park, Dongkyou;Kim, Yongchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Recently, the quick heating performance is an important issue in the car because engine power becomes so high. So car makers have been adapted the additional heating devices as like PTC(Positive Temperature Coefficient) heater. And the quick cooling performance is also important issue because its result is used in the IQS(Initial Quality Study). In this paper, control of the HVAC(Heating, Ventilation and Air Conditioning) intake door has been studied for the quick heating and cooling performance. Heating performance is improved $4.0^{\circ}C$ at $-20^{\circ}C$ ambient temperature after 20 minutes. And cooling performance is improved $1.5^{\circ}C$ at $35^{\circ}C$ ambient temperature after 10 minutes. In addition, intake door control system brings on the cost reduction because the flab door can be eliminated. This intake door control system has been adapted to the new developing cars.

Mechanical Isolation Method for an Air Intake Duct with Vertical Temperature Gradient (수직 온도구배를 갖는 공기 흡입 덕트의 기계적 격리기법)

  • Jung, Chihoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2016
  • In a Direct Connect(DC) mode altitude engine test, a labyrinth seal is set up between an air intake duct and an engine. The labyrinth seal plays a key role in mechanically isolating them, which contributes to the accurate measurement of thrust and the other component forces. However, when high vertical temperature gradient is generated in the supplied air in the duct, the isolation breaks down. In this paper, a labyrinth seal control device is designed and installed in an effort to eliminate the issue. Test result shows the device successfully gets rid of the contact problem even when high vertical temperature gradient is produced.

A Study on the ventilation Technology for Indoor Air Quality Improvement (실내 공기질 개선을 위한 환기기술에 관한 연구)

  • Chang Tae-Hyun;Cho Hyun-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.540-551
    • /
    • 2005
  • In this research, We'll focus on warm environment and ventilation characteristics when utilizing intake ports, exhaust port and 4-way cassettes for removing heat and polluted air. Four way cassettes have been typical air conditioning units for offices since the multi air-conditioner was introduced. The following installation cases will also be discussed: 1) 4-way cassette's operation without intake ports and exhaust port. 2) Effect of the position of intake port and exhaust ports. 3) cooling air flow, temperature. distribution and local supply index according to the air flow rate from 4-way cassettes.