• Title/Summary/Keyword: Intake air pressure

Search Result 198, Processing Time 0.022 seconds

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Study of Subsonic Diffusing S-Duct Design Optimization (아음속 확산형 S-덕트 최적 설계에 관한 연구)

  • Kim Su-whan;Kwon Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.121-126
    • /
    • 2002
  • Aircraft propulsion systems often use diffusing S-duct to convey air flow from the wing or fuselage intake to the engine compressor, Well designed S-duct should incur minimal total pressure losses and deliver nearly uniform flow with small transverse velocity components at the engine compressor entrance. Reduced total pressure recovery lowers propulsion efficiency and nonuniform flow conditions at the engine face lower engine stall limits. In this study, S-duct which has maximum total pressure recovery and nearly uniform flow profiles at the compressure intake should be found using design optimization methods with 3-dimensional Wavier-Stokes analyses.

  • PDF

Effect of Premixing Condition on the Combustion and Emission Characteristics of HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 예혼합 조건 변화에 따른 연소 및 배기 특성)

  • Kim, Myung-Yoon;Hwang, Seok-Jun;Kim, Dae-Sik;Lee, Ki-Hyung;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.7-12
    • /
    • 2003
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To form homogeneous charge before intake manifold, the premixed fuel is injected into premixed tank by GDI injection system and the premixed fuel is ignited by direct injected diesel fuel. But in the case of high intake air temperature, premixed fuel is auto-ignited before diesel combustion and soot emission is increased. In the case of light load condition, the BSFC is improved by intake air heating because increased air temperature promoted the combustion of premixed mixture. NOx and smoke concentration of exhaust emissions are reduced compared to conventional diesel engine. The combustion characteristics of the HCCI diesel engine such as combustion pressure, rate of heat release, and exhaust emission characteristics are discussed.

  • PDF

A Study on the Effects of Injected Air into the Compressor Exit for the Performances of a Turbocharged Diesel Engine (압축기출구에 공기분사가 터보과급 디젤기관의 성능에 미치는 영향에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.796-805
    • /
    • 1995
  • For the purpose of improving performances of a turbocharged diesel engine at low speed, this study investigates the effects of the injected air for the performances and flow characteristics in the intake and exhaust pipes by using the computer simulation with test bed. In the theoretical analysis, the whole flow system, including engine cylinders and intake and exhaust pipes, is calculated numerically by the method of filling and emptying. From the results of this study, the following conclusions may be summarized. Increasing injected air pressure into the pipe of compressor exit brings about the improvement in a performance and flow characteristics of intake and exhaust pipes under full load operating conditions at 1000 rpm of the engine speed, but shows trends of the inferior performances under no load operating conditions at 2000 rpm of the engine speed.

Investigation of Oswatitsch Scheme for Maximum Total Pressure Recovery of Hypersonic Wedge-type Intakes (극초음속 쐐기형 흡입구의 최대 전압력 회복률을 위한 오스와치 기법 분석)

  • Heo, Yub;Moon, Kyoo-Hwan;Sun, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1031-1038
    • /
    • 2017
  • In order to improve the performance of the air breathing engines, it is important to maximize the total pressure recovery through air intake. In this study, we investigated whether the Oswatitsch method, which guarantees the maximum pressure recovery for supersonic intake, is effective at hypersonic speed by compressing the intake air with the same intensity at each ramp. The non-linearity of the shock wave normal Mach number at each ramp stage was analyzed by comparing the compression ramp angle and the number of ramp to the inflow Mach number in terms of compressible thermodynamics and the operation limits of the inlet. Based on this analysis, the Oswaitisch technique yields valid conditions not only in supersonic but also hypersonic flight regime.

A Study on the Structural Design and Analysis of Air Intake of Unmanned Aerial Vehicles Applied to Composite Materials (무인 항공기 공기 흡입구의 복합재 적용 구조 설계 및 해석 연구)

  • Choi, Heeju;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.81-85
    • /
    • 2022
  • In this study, we conducted a structural design and analysis of air intake of aircraft engine using composite materials. First, an investigation on structural design requirement of target structure was carried out. The distributed pressure load and acceleration condition was applied to structural design. To evaluate the structural design result, finite element analysis was carried out. The stress, deflection and buckling analysis for structural safety evaluation was performed. Finally, it was confirmed that the air intake through structural analysis is safety.

An Experimental Study on the Performance Characteristics of the Vortex Tube for Substitution of the Intercooler in a Common-rail Diesel Engine (커먼레일 디젤기관의 인터쿨러 대체용 볼텍스 튜브 장치의 성능특성에 관한 실험 연구)

  • Im, Seok-Yeon;Choi, Doo-Seuk;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.172-178
    • /
    • 2008
  • An object of this study is to confirm performance characteristics of the vortex tube apparatus for substitution of the intercooler in a common-rail diesel engine. The turbo pressure, the intake air flow rate and the ${\Delta}T_c$ decrease ratio of the intercooler were measured in a experimental engine. The vortex tube apparatus was made after confirmation of the geometric phenomena in fundamental experiments. To investigate energy separation characteristics of the vortex tube, the measured turbo pressure was applied to the vortex tube inlet and the ${\Delta}T_c$ decrease ratio was compared with one of the intercooler in the cold air mass flow ratio similar to the intake air flow rate of the experimental engine. From the results, we found that the energy separation ratio is increased according to of the inlet pressure and the ${\Delta}T_c$ decrease ratio of the vortex tube apparatus is higher than one of the intercooler at low engine speed and engine load of medium and low.

Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines (가솔린 엔진의 스로틀 밸브 출구에서 유동측정)

  • Kim, Sung-Cho;Kim, Cheol;Choi, Jong-Geon;Wee, Hwa-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

Buzz Margin Determination of Supersonic Intake (초음속 흡입구의 버즈여유 결정기법)

  • Park, Ik-Soo;Choi, Jong-Ho;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.132-135
    • /
    • 2011
  • A technology for buzz margin determination is suggested to obtain stable shock structure and high compression efficiency of supersonic intake. By using the shock equilibrium equation of supersonic intake, sensitivity equation of terminal shock position for free stream and back pressure is induced and disturbances are quantified through statistical approach. Numerical results show that the sensitivity of shock position for disturbances is proportional to Mach number and the back pressure is dominant for variance of terminal shock position.

  • PDF

An Efficient Fluid-Thermal Integrated Analysis for Air-Intake Structure Design of a High Speed Air Vehicle (고속 비행체 공기흡입관 구조설계를 위한 효율적 유체-열 통합해석 연구)

  • Chun, Hyung-Geun;Ryu, Dong-Guk;Lee, Jae-Woo;Kim, Sang-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.8-17
    • /
    • 2015
  • In this research, low fidelity air/heat load analysis was conducted for the intake of high speed vehicle. For air/heat load calculations, aerodynamic properties at the surface and the boundary layer edge were estimated using Taylor-Maccoll equation for conical flow, shockwave relation and Prandtl-Meyer expansion equation for internal and external flow. Couette flow assumption and Reynolds analogy were used in order to calculate convective heat transfer coefficient. In order to calculate skin friction coefficient for heat transfer coefficient analysis, Van Driest method II and Reference Enthalpy method were considered. An axis symmetric SCRAMJET model was selected as a reference configuration for verifying the proper implementation of the present method. Comparison of the results using the present method and Computational Fluid Dynamic analysis showed that the present method is valuable for efficiently providing pressure and heat loads for air-intake structure design of the high speed air vehicle.