• Title/Summary/Keyword: Intake Ports

Search Result 37, Processing Time 0.024 seconds

An Experimental Study of the Flow Characteristics of Cylinder Head Port for Medium-Speed Diesel Engines (중속 디젤엔진의 실린더 헤드포트 유동 특성 실험 연구)

  • Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.790-795
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly affected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. This paper presents the results of an experimental investigation of steady flow through the various kinds of commercial cylinder head ports, and the development procedures of HHI's H21/32 prototype cylinder head ports.

  • PDF

Development of Intake Port for Range Extender Engine Using CFD Simulation (전산유체해석을 통한 RE엔진 흡기포트의 개발)

  • Kim, Chang-Su;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2575-2580
    • /
    • 2013
  • An intake port for Range Extender engine has been developed using CFD technique. Three dimensional intake port model has been built and computational analysis has been performed. Computed non-dimensional flow coefficient, swirl ratio and swirl number have been compared with the experimental result. Convex and concave curvature of the intake port have been optimized to reduce recirculation flow and flow resistance. Finally, the mean flow coefficient is 0.383 and the mean swirl number is 1.544. The intake port shows relatively excellent performance compared with those of general 2 valve engine system intake ports.

Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines (루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구)

  • Chae, S.;Ryou, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

In-Cylinder Air Flow Characteristics of the HCCI Engine along with Variable Intake Ports (HCCI 엔진의 흡기포트 입구부 변화에 따른 유동특성 비교)

  • Kim, Min-Jung;Lee, Sang-Kyoo;Rhim, Dong-Ryul;Chung, Jae-Woo;Kang, Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.272-275
    • /
    • 2008
  • One of the important operating factors for the air-fuel pre-mixed conditions in an HCCI engine is an in-cylinder flow. In this study, unsteady in-cylinder air flow characteristics in a diesel engine as a reference engine of an HCCI engine development were numerically analysed. Unsteady flow analyses were conducted with the combination of 3 intake port inlets, then the in-cylinder air flow distribution and swirl ratio results from a case were compared with the results from the other cases.

  • PDF

Effects of the Flow Characteristics of Helical Intake Port on the Performance and Emission in a Turbocharged DI Diesel Engine. (나선형 흡기포트의 유동특성이 과급식 디젤엔진의 성능 및 배출가스에 미치는 영향)

  • 윤준규;양진승;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.86-96
    • /
    • 2000
  • This study is to consider that the helical intake port flow and fuel injection system have effects on the characteristics of engine performance and emissions in a turbocharged DI diesel engine of the displacement 9.4L. The swirl ratio for ports was modified by hand-working and measured by impulse torque swirl meter, For the effects on performance and emission, the brake torque, BSFC were measured by engine dynamometer and NOx, smoke were by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased, And as the swirl is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by the following applied parameter; the swirl ratio is 2.43, injection timing is BTDC $13^{\circ}$CA and compression is 15.5.

  • PDF

In-Cylinder Fuel Distribution Measurements in a Lean Burn Engine (희박연소 엔진의 연소실내 연료분포 특성 연구)

  • Kim, K.S.;Lee, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.19-32
    • /
    • 1999
  • The present study investigated the forms and behaviors of fuel during intake and compression process, and the initial flame stability in a lean burn engine modified as a single cylinder engine equipped with quartz windows for visualization. PLIF(Planar Laser Induced Fluorescence) method with KrF Excimer laser was used for measuring the fuel distributions. The principal design concept of the lean burn nin in this study is the axial stratification in the fuel distribution via fuel injection during intake process and different shapes of intake ports; helical and straight. The experiments showed that fuel flowed in as a vapor state in the early part of intake process and lots of this mixture mated down along the intake valve side cylinder wall, but in the latter part, a lot of fuel flowed in as a liquid state and this fuel stayed in the upper part of cylinder, after that the dense fuel cloud moved upward in the early of part compression process. It became clear that the fuel flowed in via straight port had a important role in the axial fuel stratification.

  • PDF

An experimental study on the characteristics of the swirl ratio distribution with an intake port geometry (흡기포트 형상에 따른 선회비 분포특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Ju, Bong-Cheol;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.725-734
    • /
    • 1997
  • The effect of helical intake port geometry on in-cylinder swirl flow characteristics was studied. Two helical intake ports were selected to change swirl ratio, mean flow coefficient with the variation of valve lifts, valve eccentricity ratios and axial distance. The measurements were made by using an impulse swirl meter. The port B modified to increase the swirl ratio( $R_{s}$) had the tendency of the increased non-dimensional rig swirl ( $N_{r}$) distribution in comparison with that of the port A. And the $N_{r}$ distribution was remarkably improved at low valve lifts. The modification of the geometry to increase the swirl ratio ( $R_{s}$) in helical intake port resulted in the decrease of the mean flow coefficient ( $C_{f(mean)}$) regardless of valve eccentricity ratio ( $N_{y}$). And also non-dimensional rig swirl ( $N_{r}$) in the high valve lift affected the calculation of swirl ratio considerably.onsiderably.

A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port (흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

Effects of Port Masking on Emission (포트 마스킹이 엔진의 배기에 미치는 영향)

  • Kim, Hyeong-Sig;Park, Chan-Jun;Ohm, In-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • To secure basic data for intake port design, effects of a port masking on the part load performance were investigated in a 4 valve SI engine. For this purpose, 9 kinds of masking, which have different shapes and masking ratio, are applied to the engine intake system. The characteristics of the performance were estimated through mixture response test at various engine load and speed. The results show that NOx emission, one of indexes for stratification, increases considerably in spite of retarded spark timing due to the stratification which is caused by unequal flow distribution between the two intake ports. The mechanism of stratification by masking is different from axial stratification and the fuel entering through masked port plays a very important role in this stratification process. In conclusion, the port masking method could be easily applied to engine intake system and be very effective for inducing the stratified charging without the change of port design.

A Study on the Effects of Intake Port Geometry on In-Cylinder Swirl Flow Field in a Small D.I. Diesel Engine (직접분사식 소형 디젤엔진의 실린더내 스월 유동장에 미치는 흡기포트의 형상에 관한 연구)

  • Lee, Ki-Hyung;Han, Yong-Taek;Jeong, Hae-Young;Leem, Young-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2004
  • This paper studies the effects of intake port configuration on the swirl that is key parameter in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on fuel air mixing, combustion and emissions. To investigate the swirl flow generated by various intake ports, steady state flow tests were conducted to evaluate the swirl. Helical port geometry, SCV shape and bypass were selected as the design parameters to increase the swirl flow and parametric study was performed to choose the optimal port shape that would generate a high swirl ratio efficiently. The results revealed that a key factor in generating a high swirl ratio was to suitably control the direction of the intake air flow passing through the valve seat. For these purposes, we changed the distance of helical and tangential port as well as installed bypass near the valve seat and the effects of intake port geometry on in-cylinder flow field were visualized by a laser sheet visualization method. From the experimental results, we found that the swirl ratio and mass flow rate had a trade off relation. In addition, the result indicates that the bypass is a effective method to increase the swirl ratio without sacrificing mass flow rate.