• Title/Summary/Keyword: Intake Flow Coefficient

Search Result 61, Processing Time 0.024 seconds

Experimental Study on the Characteristics of Flowrate for the Intake System using the Filter Block (필터 블록을 이용한 하천용수 취수시스템의 유량특성에 관한 실험적 연구)

  • Kim, Hyung Suk;Park, Moonhyeong;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1247-1257
    • /
    • 2015
  • The river water intake system composed of the filter block, without installation of weirs in a channel, was proposed. To apply it to rivers, analysis of hydraulic characteristics is needed. In this study, the hydraulic experiment on the characteristics of flowrate passing through the river water intake system was carried out. The filter block was produced using riprap and stainless steel bead at the channel bottom. The experiment was carried out under various flow conditions and the flowrate passing through the intake system was measured. As the water depth approaching the intake system became deeper, the flowrate diverting to the intake system increased. As the Froude number increased, the flowrate diverting to the intake system decreased. The same trend was shown regardless of the characteristics of a filter block in the intake system. A constant discharge coefficient was shown regardless of the Froude number but it changed according to the size of a riprap and a stainless steel bead in the filter block. It was found that the discharge coefficient increases with the 0.6 power of the material size.

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

Measurement of acoustic impedance of porous woven hoses in engine intake systems in the presence of mean flow (유체의 흐름이 있는 엔진 흡기계용 직조관의 음향 임피던스 측정 및 전달손실 예측)

  • 이정권;박철민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.996-1000
    • /
    • 2002
  • A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake roaring. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. Because of its peculiar acoustical and structural characteristics, the accurate measurement of the wall impedance ofa porous woven hose is not easy. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement, and, as a result, it is very simple. The measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, and arbitrary mean flow condition, are in reasonably good agreement with values predicted from curve-fitted impedance data.

  • PDF

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.

Analysis of In-Cylinder Flow Characteristics of a High Speed D.I. Diesel Engines (고속 직접분사식 디젤 엔진의 실린더내 유동 해석)

  • Park, Sang-Chan;Ryu, Jae-Deok;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1276-1283
    • /
    • 2002
  • Recently, HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a 4-valve small diesel cylinder head with a tangential and helical intake port. The flow characteristics such as coefficient of flow rate(Cf), swirl ratio (Rs), and mass flow rate (ms) were measured in the steady flow test rig using the impulse swirl meter and the analysis of in-cylinder flow field was conducted by experiment using the PIV and calculation using the commercial CFD code. As the results from steady flow test indicate, the mass flow rate of the cylinder head with a short distance between the two intake ports is increased over 13% than that of the other head. However, the non-dimensional swirl ratio is decreased approximately 15%. From in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the velocity distribution became uniform near the TDC. In addition, the results of the calculation are good agreement with the experimental results.

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

스마트 무인기 흡기구 설계 및 성능해석

  • Jung, Yong-Wun;Jun, Yong-Min;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.197-207
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pitor type intake model and plenum chamber. In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+. The analysis results of the total pressure variation and the velocity distribution were illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst flight condition as well as the standard flight condition.

  • PDF

The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine (흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

Prediction of drag increase due to flow through automobile's cooling system (자동차 냉각장치를 통하는 유동에 의한 항력 변화 예측)

  • 최도형;이응호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.128-135
    • /
    • 1992
  • Using a commercial flow-analysis code VSAERO, a method to predict the drag of an automobile induced by the intake air of the cooling system has been devised. Given the pressure loss coefficient across the radiator, which varies with the radiator shape and the local Re, a simplified model of the internal flow is coupled with VSAERO to find the mass-flow rate through the car. The flow rate is obtained iteratively and that, in turn, gives the drag associated with this flow, which essentially is the momentum carried by the drained air. The results of a few sample cases are presented for two front-end shapes in combination with varying radiator frontal area.

  • PDF