• Title/Summary/Keyword: Intact rock

Search Result 116, Processing Time 0.027 seconds

Estimation of the Anisotropic Material Properties of Rock Masses with Permeation Grouting (그라우팅 강화터널의 설계 특성치 산정에 관한 연구)

  • Lee, Jun Seok;Bang, Chun Seok;Choe, Il Yun;Eom, Ju Hwan
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.1
    • /
    • pp.67-80
    • /
    • 1999
  • The Grout-reinforcement technique which is widely used during the excavation of a shallow or an endangered tunnel can be classified into a couple of groups according to the properties and injection methods of the grout. The reinforcement design will, therefore, take a different approach based on the grouting method under consideration. However, the injection procedure is mainly performed by the experience of the foreman rather than engineering judgement , specifically the permeation grouting through the rock joints and its reinforcement effect Is not fully under-stood during the design stage, In this study, the anisotropic material properties of the grout-reinforced rock masses are derived from the concept of composite materials and the effect of intact rock, vertical grouting and permeation grouting is, therefore, fully accounted for. Through the parametric studies on the characteristics of rock joints, intact rock and grouting materials, various case studies have been considered. The results, illustrated via the design charts, can be directly used during the reinforcement design.

  • PDF

Side Shear Resistance of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh-Sung;Kim, Byung-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.611-618
    • /
    • 2005
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into weathered rock was investigated. For that, a database of 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were socketed into weathered igneous/meta-igneous rock at four different sites. The static axial load tests were performed to examine the resistant behavior of the piles, and a comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. No correlation was found between the compressive strengths of intact rock and the side shear resistance of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. $E_m,\;E_{ur},\;_{plm}$, RMR, RQD, j) was found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.7 in most cases. Additionally, the applicability of existing methods for the side shear resistance of piles in rock was verified by comparison with the field test data. The existing empirical relations between the compressive strength of intact rock and the side shear resistance(Horvath (1982), Rowe & Armitage(1987) etc.) appeared to overestimated the side shear resistance of all piles tested in this research unless additional consideration on the effect of rock mass weathering or fracturing was applied. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.1, and RQD is below 50%.

  • PDF

A Study on Waterjet Fracture Mechanism for Granitic Rocks (화강암에 대한 워터젯 파쇄 메커니즘에 관한 연구)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.643-648
    • /
    • 2010
  • Waterjet is a very useful technology for rock excavation because of low level noise and vibration during breaking rocks. To accurately predict the volume and shape excavated by the waterjet, it is important to understand waterjet fracture mechanisms. There have been various theoretical assumptions and approaches in the literature. In this study, waterjet mechanisms are classified into three standards: a mechanism scale, theoretical assumption for a target material, and jet phase. In addition, through a waterjet experimental study for weathered and intact granitic rocks, a fracture shape is observed and analyzed on comparison with the previous mechanisms. As a result, best waterjet mechanisms are selected to explain the fracture pattern of the granitic rocks.

  • PDF

A Study on Crest Settlement Characteristics of Rockfill Dam (락필댐의 정부침하 거동특성 연구)

  • Park, Han-Gue;Park, Dong-Soon;Kim, Yong-Seong;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1219-1226
    • /
    • 2005
  • In this study, crest settlement characteristics of CFRD (Concrete Faced Rockfill Dam) and ECRD (Earth Cored Rockfill Dam) were analysed through the instrumentation data from representative 7 large dams in Korea. Also, We have studied the effect of valley shape and uniaxial compressive strength of intact rock to better understand the impact of the parent rock strength and the valley shape on the long term crest settlement of CFRDs. From the results, we found that the valley shape and strength of intact rock on crest settlement of dams are an important parameters. As a result, we obtained that the maximum crest settlement of CFRD is larger than that of ECRD and long term crest settlement rate per dam height of rockfill dams is less than 0.60% during service period.

  • PDF

Evaluation of the mechanical properties of discontinuous rock masses by using a bonded-particle model (입자결합모델을 이용한 불연속체 암반의 역학적 물성 평가)

  • Park Eui-Seob;Ryu Chang-Ha;Bae Seong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.348-358
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of discontinuous rock masses is very important for the design of underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is assigning the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. Instead, the micro-scale properties of the intact rock and joints are defined and the macro-scale response results from those properties and the geometry of the problem. In this paper, a $30m{\times}30m{\times}30m$ jointed rock mass of road tunnel site was analyzed. A discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of discontinuous rock masses were determined and compared to the results of empirical methods such as RMR, Q and GSI. The values of Young's modulus, Poisson's ratio and peak strength are almost similar from PFC model and Empirical methods. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, the mechanical response of the PFC model was not determined by a user specified constitutive model.

  • PDF

End Bearing Behavior of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.197-203
    • /
    • 2008
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the rock mass conditions with fractures rather than the strength of intact rock. Therefore, a database which includes 13 load tests performed on cast-in-place concrete piles and soil investigation data at the field test sites was made first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. Pressuremeter modulus and limit pressure, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greater than 0.7 in most cases. In addition, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

암석의 파괴거동 모형화에 대한 고찰

  • 김문겸;장정범;오금호;이필규
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.67-81
    • /
    • 1995
  • 암반 구조체를 해석하기 위해서는 파괴전의 응력-변형률 거동뿐만 아니라 파괴를 구성하는 삼차원 응력 상태를 알아야 한다. 암반의 파괴를 지배하는 조건을 결정하기 위해서는 일반적인 삼차원 파괴기준이 필요하다. 암반의 파괴를 이루는 응력상태를 파악하기 위해 많은 실험적 연구가 수행되었으며 특히 장비의 사용에 있어서 하중 메카니즘과 시료의 경계조건의 개선에 많은 연구가 진행되었다. 암반의 파괴조건을 설명하는 데에는 이러한 기본적인 기준들 이외에도 경험적인 기준들이 사용되어 왔다. Hoek 와 Brown 은 비등방성 재료의 강도에 대해 연구하였고 순수암(intact rock)의 강도에 대한 경험적인 기준을 제안하였다. (중략)

  • PDF

Numerical Verification for Plane Failure of Rock Slopes Using Implicit Joint-Continuum Model (내재적 절리-연속체 모델을 이용한 암반사면 평면파괴의 수치해석적 검증)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.125-132
    • /
    • 2020
  • Embedded joints in the rock mass are a major constituent influencing its mechanical behavior. Numerical analysis requires a rigorous modeling methodology for the rock mass with detailed information regarding joint properties, orientation, spacing, and persistence. This paper provides a mechanical model for a jointed rock mass based on the implicit joint-continuum approach. Stiffness tensors for rock mass are evaluated for an assemblage of intact rock separated by sets of joint planes. It is a linear summation of compliance of each joint sets and intact rock in the serial stiffness system. In the application example, kinematic analysis for a planar failure of rock slope is comparable with empirical daylight envelope and its lateral limits. Since the developed implicit joint-continuity model is formulated on a continuum basis, it will be a major tool for the numerical simulations adopting published plenteous thermal-hydro-chemical experimental results.

2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests

  • Vaziri, Mojtaba Rabiei;Tavakoli, Hossein;Bahaaddini, Mojtaba
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.117-133
    • /
    • 2022
  • Determination of the mechanical behaviour of jointed rock masses has been a challenge for rock engineers for decades. This problem is more pronounced for non-persistent jointed rock masses due to complicated interaction of rock bridges on the overall behaviour. This paper aims to study the effect of a non-persistent joint set configuration on the mechanical behaviour of rock materials under both uniaxial and biaxial compression tests using a discrete element code. The numerical simulation of biaxial compressive strength of rock masses has been challenging in the past due to shortcomings of bonded particle models in reproducing the failure envelope of rock materials. This problem was resolved in this study by employing the flat-joint contact model. The validity of the numerical model was investigated through a comprehensive comparative study against physical uniaxial and biaxial compression experiments. Good agreement was found between numerical and experimental tests in terms of the recorded peak strength and the failure mode in both loading conditions. Studies on the effect of joint orientation on the failure mode showed that four zones of intact, transition to block rotation, block rotation and transition to intact failure occurs when the joint dip angle varies from 0° to 90°. It was found that the applied confining stress can significantly alter the range of these zones. It was observed that the minimum strength occurs at the joint dip angle of around 45 degrees under different confining stresses. It was also found that the joint orientation can alter the post peak behaviour and the lowest brittleness was observed at the block rotation zone.

A Study of Simple Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 간편 RMR에 관한 연구)

  • 위용곤;노상림;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.493-500
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard to make out because it is difficult to estimate each valuation items through all kind of field situations and items of RMR have interdependence. So the experts of tunnel assessment have problems with rating rock mass. In this study, using multivariate analysis based on domestic data(1011EA) of water conveyance tunnel, we presented rock mass rating system which is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, orientation of discontinuities, intact rock strength, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system. And using data which have been collected at other site, we examined that presented multiple regression model was useful.

  • PDF