• Title/Summary/Keyword: Insulin-like growth factor-Ⅰ

Search Result 527, Processing Time 0.029 seconds

Hormonal Regulation of Insulin-Like Growth Factor Binding Protein Secretion by a Bovine Mammary Epithelial Cell Line

  • Kim, W.Y.;Chow, J.C.;Hanigan, M.D.;Calvert, C.C.;Ha, J.K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • A mammary epithelial cell line (MAC-T) established as a model for lactation was utilized to identify and characterize effects of various hormones upon insulin-like growth factor binding protein secretion. Ligand and immunoblot analyses of conditioned media indicated that insulin-like growth factor binding protein-2 was secreted by MAC-T cells. Insulin-like growth factor-I stimulated insulin-like growth factor binding protein-2 secretion in a dose-dependent manner, but prolactin and bovine somatotropin did not alter insulin-like growth factor binding protein-2 secretion. Insulin increased and cortisol decreased insulin-like growth factor binding protein-2 secretion. Effects of insulin-like growth factor-I on insulin-like growth factor binding protein-2 secretion support previous studies using primary cultures of bovine mammary cells and bovine fibroblasts. Effects of cortisol and insulin on insulin-like growth factor binding protein-2 secretion may be explained by changes in protein synthesis. In addition, supraphysiological doses of insulin can cross-react with the insulin-like growth factor-I receptor and stimulate insulin-like growth factor binding protein-2 secretion. MAC-T cells provide a model system to study mechanisms that regulate local insulin-like growth factor-I bioactivity.

Serum Levels of Insulin-Like Growth Factor-I in Flounder, Parlichthys olivaceus (넙치 (Parlichthys olivaceus) 혈액중 Insulin-like growth factor-I의 함유수준)

  • NAM Taek-Jeong;PARK Kie-Young;LEE Young-Don;KIM Yong-Uk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.150-156
    • /
    • 1996
  • Insulin-like growth factor-1 (IGF-I) is a mitogenic peptide with molecular mass of 7kDa. It is produced mainly in the liver and has important functions in the regulation of development and somatic growth. Recently, several investigations were undertaken to examine the biological actions and structures of IGF-I in fish. In this study, the serum levels of IGF-I were estimated from flounder, Parlichthys oilvaceus, before, during and after fasting, and the levels were accounted for 47 ng/ml, 40 ng/ml and 45 ng/ml, respectively. These results suggest that food deprivation primarily reduces IGF-I level in the blood.

  • PDF

Effects of Insulin-like Growth Factor-I (IGF-I) on Body Weight and the Cocentration of Serum IGF Binding Proteins in Korean Rockfish (Sebastes schlegeli) (Insulin-like growth factor-I(IGE-I)이 조피볼락의 체중 및 혈액중 IGF binding proteins에 미치는 영향)

  • NAM Taek-Jeong;LEE Sang-Mi;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.774-778
    • /
    • 1998
  • The effect of insulin-like growth factor-I (IGF-I) on circulating insulin-like growth factor binding proteins (IGFBPs) in the Korean rockfish, Sebastes schlegeli, was assessed after injected of recombinant human IGF-I (6 $\mu$g/100 g body weight). Growth and metabolic status of each fish were assessed by determing body length and body weight changes, and serum glucose concentration. Serum IGF binding proteins concentrations were assessed by the Western ligand blot procedure using $^{125}I$-labeled human IGF-I tracer. The fish received IGF-I were Heavier than the saline-injected control fish after 2 weeks of treatment. Plasma IGFBP-3 concentration inclosed, but plasma IGFBP-1 and glucose levels decreased significantly after administration. Taken together, the findings of this study suggest that human IGF-I is biologically active in Korean rockfish and may be of significance in metabolic and growth-related processes.

  • PDF

Molecular Characterization and Expression Analysis of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-1 Genes in Qinghai-Tibet Plateau Bos grunniens and Lowland Bos taurus

  • Chen, Ya-bing;Fu, Mei;Lan, Dao-liang;Li, Jian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak). We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA) IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR) technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05). The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05) of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

Effect of bovine theileriosis on the growth hormone and insulin-like growth factor-I (소의 theileriosis가 성장 hormone과 insulin-like growth factor-I에 미치는 영향)

  • Baek, Byeong-kirl;Byoun, Sun-youn;Lee, John-wha;Lee, Ho-ill
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.409-416
    • /
    • 1997
  • Bovine theileriosis caused by Theileria sergenti is the tick-borne intraery- throcytic piroplasmosis, that occurs in most regions of Korea. It results in severe economic losses on a farm caused by anemia, milk production loss, abortion and death. This study was undertaken to confirm the effects of the growth hormone and the insulin-like growth factor-I which are associated in the growth of cattle infected by T sergenti. The blood of one hundred and twenty ten-month Holstein was collected and the prepared blood smear was stained with acridine orange to investigate their parasitemia. And the hematological profiles were observed. According to the value of the hematocrit, they were categorized into four groups : Group 1 was under 20 percent, groups 2 and 3 were from over 21 to under 30 percent and from over 31 to under 35 percent and group 4 was over 36 percent. As the value of the hematocrit decreased, parasitemia(%) in erythrocytes was observed to increase(Y=-1.064X + 30.537, r=0.660). The amounts of the growth hormone and the insulin-like growth factor-I in the serum were measured by the radioimmunoassay. The growth hormone in serum of the group 1, group 2, group 3 and group 4 were observed as $0.238{\pm}0.043nmol/l$, $0.21{\pm}0.024nmol/l$, $0.366{\pm}0.035nmol/l$ and $0.646{\pm}0.223nmol/l$, respectively. The quantitative of the insulin-like growth factor-I in the same groups were observed also as $209.686{\pm}18.94ng/ml$, $250.9{\pm}12.609ng/ml$, $279.3{\pm}8.883ng/ml$ and $365.9{\pm}22.45ng/ml$, respectively. It can be concluded that the growth hormone and the insulin-like growth factor-I were observed to decrease in severe anemia due to theileriosis.

  • PDF

Physiological Function of Insulin-like Peptides in Insects (곤충 insulin-like peptide의 생리 조절 작용)

  • Kim, Doo Kyung;Lee, Jaemin
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.85-90
    • /
    • 2022
  • Insulin and insulin-like growth factor-1 (IGF-1) are hormones that play an important role in the physiological regulation of metabolism, growth, and longevity in vertebrates. Likewise, insulin-like peptides (ILPs), which are structurally similar to insulin and IGF-1, are crucial in insect physiology. In this review, we present an integrated summary of insect ILPs and their receptor signaling, which has been shown to be comparable to insulin and IGF-1 receptor signaling in vertebrates based on genetic studies of Drosophila melanogaster. Additionally, we review the control of ILP synthesis and secretion in the brain in response to nutrition, as well as the ILPs' physiological role in insect metabolism. Moreover, we discuss the contribution of ILPs to growth, development, reproduction, and diapause. Finally, we consider the possibility of targeting ILP receptor signaling in pest management.

The roles of PKC-δ on the regulation of insulin-like growth factor(IGF)-I and insulin-Like growth factor binding protein-3 secretion by all-trans retinoic acid in MCF-7 cell (MCF-7 cell에서 all-trans retinoic acid에 의한 insulin-like growth factor-I와 insulin-like growth factor binding protein-3 분비조절에 있어서 PKC-δ의 역할)

  • Lee, Sun-Mi;Kim, Sang-Hoon;Choi, Kwang-Soo;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.97-105
    • /
    • 2006
  • All-trans retinoic acid (AtRA) induces growth inhibition and apoptosis in a variety of tumer cells, including MCF-7 cells. Insulin-like growth factors (IGFs) system has been reported to be associated with the development of cancer. Although MCF-7 cell with AtRA is to be the major stimulus for the cell growth and apoptosis, the mechanism of insulin-like growth factor-I (IGF-I)/insulin-like growth factor binding protein-3 (IGFBP-3) system remains to be elucidated. Thus, this study was conducted to the effect of AtRA on the gene expression and level of IGF-I and IGFBP-3. In addition, we investigated the involvement of PKC-${\delta}$ on the IGF-I and IGFBP-3 secretion in MCF-7 cell. AtRA(${\geq}10^{-7}M$) decreased the IGF-1 secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cells. Especially, the treatment of AtRA at 72 hours caused a significant reduction in the IGF-I secretion and mRNA expressions but increment in IGFBP-3 secretion and mRNA expressions (p < 0.05). $10^{-7}M$ AtRA activated PKC-${\delta}$ that is one among PKC-$\iota$, ${\alpha}$, ${\lambda}$ and ${\delta}$ in MCF-7 cell. Rotllerin, a PKC-${\delta}$ inhibitor, blocked AtRA-induced inhibition of the IGF-I and mRNA expressions, and increase of lGFBP-3 and mRNA expressions in MCF-7 cell. Together, AtRA inhibited the IGF-I secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cell. Furthermore, AtRA-induced alteration of IGF-I, IGFBP-3 secretion, and the gene expressions were mediated via PKC-${\delta}$ activity.

Insulin-like Growth Factor-1 (IGF-1) Gene Expression Is Enhanced under Hypothermia but Depressed under Additional Ischemic Stimulus

  • Kwon, O-Yu;Kwon, Kisang;Yu, Kweon;Kim, Seung-Whan
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2015
  • There are several studies that show hypothermia improves cellular ischemia damages on experimental and clinical bases. However, its exact molecular mechanisms are unclear. In this study, we demonstrate that hypothermia induced insulin-like growth factor 1 (IGF1) gene expression, and its expression was dramatically decreased under ischemic insults. It was also demonstrated that hypothermia activated endoplasmic reticulum (ER) stress sensors especially both the phosphorylation of $eIF2{\alpha}$ (eukaryotic translation initiation factor 2 alpha) and ATF6 (activating transcription factor-6) proteolytic cleavage. However, the factors of apoptosis and autophagy were not associated with hypothermia. We suggest that hypothermia-treated IGF1 gene expression after ischemia may show a good possibility for the development of treatments and diagnostic methods in cerebral ischemic damages.

Insulin-like Growth Factor-1, IGF-binding Protein-3, C-peptide and Colorectal Cancer: a Case-control Study

  • Joshi, Pankaj;Joshi, Rakhi Kumari;Kim, Woo Jin;Lee, Sang-Ah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3735-3740
    • /
    • 2015
  • Context: Insulin-like growth factor peptides play important roles in regulating cell growth, cell differentiation, and apoptosis, and have been demonstrated to promote the development of colorectal cancer (CRC). Objective: To examine the association of insulin-related biomarkers including insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) and C-peptide with CRC risk and assess their relevance in predictive models. Materials and Methods: The odds ratios of colorectal cancer for serum levels of IGF-1, IGFBP-3 and C-peptide were estimated using unconditional logistic regression models in 100 colorectal cancer cases and 100 control subjects. Areas under the receiving curve (AUC) and integrated discrimination improvement (IDI) statistics were used to assess the discriminatory potential of the models. Results: Serum levels of IGF-1 and IGFBP-3 were negatively associated with colorectal cancer risk (OR=0.07, 95%CI: 0.03-0.16, P for trend <.01, OR=0.06, 95%CI: 0.03-0.15, P for trend <.01 respectively) and serum C-peptide was positively associated with risk of colorectal cancer (OR=4.38, 95%CI: 2.13-9.06, P for trend <.01). Compared to the risk model, prediction for the risk of colorectal cancer had substantially improved when all selected biomarkers IGF-1, IGFBP-3 and inverse value of C-peptide were simultaneously included inthe reference model [P for AUC improvement was 0.02 and the combined IDI reached 0.166% (95 % CI; 0.114-0.219)]. Conclusions: The results provide evidence for an association of insulin-related biomarkers with colorectal cancer risk and point to consideration as candidate predictor markers.