• Title/Summary/Keyword: Insulin responsiveness

Search Result 16, Processing Time 0.046 seconds

INSULIN RESPONSIVENESS TO GLUCOSE AND TISSUE RESPONSIVENESS TO INSULIN IN SOWS, SHEEP AND PIGS

  • Sano, H.;Terashima, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 1991
  • Insulin responsiveness to glucose and tissue responsiveness to insulin, using the hyperglycemic clamp and the hyperinsulinemic euglycemic clamp techniques, were compared among cows, sheep and pigs. The plasma insulin concentrations during the hyperglaycemic clamp period were highest (p < 0.05) in cows, followed by sheep and pigs. The glucose infusion rate in the hyperinsulinemic euglycemic clamp technique was greater (p < 0.01) in pigs than in cows and sheep. These results suggest responsiveness to insulin is higher in pigs than in cows and sheep.

Effects of Non-protein Energy Intake on the Concentrations of Plasma Metabolites and Insulin, and Tissue Responsiveness and Sensitivity to Insulin in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki;Shiga, Akio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1010-1018
    • /
    • 2006
  • A glucose clamp technique was used to investigate the effects of non-protein energy intake on tissue responsiveness and sensitivity to insulin for glucose metabolism in intact adults male goats. Three goats were fed diets at 1.0, 1.5 and 2.0 times of ME for maintenance, each for 21 d. Crude protein intake was 1.5 times of maintenance requirement in each treatment. Tissue responsiveness and sensitivity to insulin were evaluated using a hyperinsulinemic euglycemic clamp technique with four levels of insulin infusion, beginning at 13 h after feeding. Concentrations of plasma metabolites and insulin were also measured at 3, 6 and 13 h after feeding, for evaluating effects of non-protein energy intake on the metabolic status of the animals. Increasing non-protein energy intake prevented an increase in plasma NEFA concentration at 13 h after feeding (p = 0.03). Plasma urea-nitrogen and total amino-nitrogen concentrations decreased (p<0.01) and increased (p = 0.03), respectively, with increasing non-protein energy intake across time relating to feeding. Plasma insulin concentration was unaffected (p = 0.43) by non-protein energy intake regardless of time relating to feeding. In the glucose clamp experiment, increasing non-protein energy intake decreased numerically (p = 0.12) the plasma insulin concentration at half-maximal glucose infusion rate (insulin sensitivity), but did not affect (p = 0.60) maximal glucose infusion rate (tissue responsiveness to insulin). The present results suggest that an increase in non-protein energy intake may enhance insulin sensitivity for glucose metabolism, unlike responsiveness to insulin, in adult male goats. The possible enhancement in insulin sensitivity may play a role in establishing anabolic status in the body, when excess energy is supplied to the body.

Effects of Dietary Starch and Sucrose on Tissue Responsiveness and Sensitivity to Insulin in Goats Fed a High-concentrate Diet

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.385-392
    • /
    • 2007
  • A glucose clamp technique was used to compare dietary starch (ST), starch plus sucrose (ST+SU) and sucrose (SU) with regard to the effect on tissue responsiveness and sensitivity to insulin in intact adult male goats. The goats were fed diets containing 1.2 times of ME and CP for maintenance requirements twice daily for 21 d. Of the energy intake, 30% was offered with ST, ST+SU or SU for the respective diets, and 70% as alfalfa hay, ground corn and ground soybean meal at the respective weight ratio of 1, 1, and 0.3 for all diets. Tissue responsiveness and sensitivity to insulin were evaluated using a hyperinsulinemic euglycemic clamp technique with four levels of insulin infusion beyond 13 h after feeding. The concentrations of plasma metabolites and insulin were also determined at 3, 6 and 13 h after feeding to evaluate the effects of different carbohydrates on metabolic states in the body. Plasma glucose concentration was higher (p = 0.01) for SU diet than for ST and ST+SU diets. Increasing SU intake decreased (p<0.01) plasma acetate concentration across the time. At 3 h but not 6 and 13 h after feeding, high lactate (p = 0.01), and non-significant high propionate (p = 0.14) and low urea nitrogen (p = 0.19) concentrations were observed in plasma on SU compared with ST and ST+SU diets. Plasma insulin concentration was not different (p = 0.44) between ST and SU fed animals. In the glucose clamp experiment, considering the effects on the maximal glucose infusion rate (tissue responsiveness to insulin, p = 0.54) and the plasma insulin concentration at half-maximal glucose infusion rate (insulin sensitivity, p = 0.54), SU was not different from ST. It is concluded that SU may not be greatly different from ST with regard to the effect on tissue responsiveness and sensitivity to insulin in adult goats when fed twice daily as part of a high-concentrate diet. The possible greater effects of SU on plasma metabolites concentrations at 3 h than at 6 and 13 h after feeding suggest that a lack of persistency of SU effects during the postfeeding period may be associated with the poor response to SU in insulin action.

Exercise Intervention on Blood Glucose Control of Type 2 Diabetes with Obesity : A Systematic Review (비만을 동반한 제 2형 당뇨병환자의 혈당 조절을 위한 운동 중재 : 체계적 문헌고찰)

  • Jung, Su-Ryun;Kim, Wan-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.1
    • /
    • pp.11-26
    • /
    • 2018
  • PURPOSE: The aim of this study was to review the effects of exercise intervention on blood glucose control in obese type 2 diabetic patients. METHODS: The PubMed and KERISS search engines were used and 61 papers that met the key questions were selected. RESULTS: Exercise is an effective intervention for the control of blood glucose in type 2 diabetic patients because it does not impair glucose transport in the skeletal muscle induced by muscle contractions. Insulin resistance, which is characteristic of type 2 diabetes, is caused by decreased insulin sensitivity or insulin responsiveness. Acute exercise improves the glucose metabolism by increasing the insulin-independent signaling pathways and insulin sensitivity in the skeletal muscle, and regular long-term exercise improves the skeletal muscle insulin responsiveness and systemic glucose metabolism by increasing the mitochondrial and GLUT4 protein expression in the skeletal muscle. CONCLUSION: The improvement of the glucose metabolism through exercise shows a dose-response pattern, and if exercise consumes the same number of calories, high intensity exercise will be more effective for the glucose metabolism. On the other hand, it is practically difficult for a patient with obese type 2 diabetes to control their blood glucose with high intensity or long-term exercise. Therefore, it will be necessary to study safe adjuvants (cinnamic acid, lithium) that can produce similar effects to high-intensity and high-volume exercises in low-intensity and low-volume exercises.

Effect of n-3 Polyunsaturated Fatty Acids on Glucose Uptake of Soleus Muscle in NIDDM Diabetic Rats (NIDDM 당뇨병 흰쥐에서 n-3 다가불포화지방산이 가자미근의 Glucose Uptake에 미치는 영향)

  • 최원경;윤옥현;강병태
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.550-555
    • /
    • 1998
  • The purpose of this study was to investigate the effects of n-3 polyunsaturated fatty acids(PUFA) on glucose and lipids metabolism in high-fat diet rate. Rats were randomly assigned to normal, high-fat with n-3 PUFA and high-fat dietary groups. Experiments were carried out after 5 weeks feeding with prescriptive diets following 7 hrs fasting. Body weight gains tended to be higher in high-fat fed rats than normal. Blood glucose was increased (p<0.05) by high-fat diet compared with normal diet, and decreaseed (p<0.05) to normal level by n-3 PUFA. Plasma insulin level was significcantly higher (p<0.01) in high-fat diet rats than that of normal-diet rats, and also decreased (p<0.01) by n-3 PUFA. Glucose up take of soleus muscle in vitro was decreased markedly in high-fat fed rats than normal diet rats at 0, 1, 10, and 100nM insulin concentration. Therefore insulin sensitivity and responsiveness were decreased by high-fat diet. Omega-3 PUFA made a recover(p<0.01) insulin sensitivity to almost normal level, and improved (p<0.05) insulin responsiveness in some extent. In conclusion, the results suggest that metabolic disorder of glucose and insulin resistance of skeletal muscle are caused by high-fat diet and n-3 PUFA can ameliorate metabolic disorder and insulin resistance.

  • PDF

Effect of Combinational Treatment with Lithium, Insulin and Contraction on Glucose Transport Activity of Rat Skeletal Muscle (쥐의 골격근에서 리튬, 인슐린 및 근수축 복합처치가 당수송 활성도에 미치는 영향)

  • Jeon, Byeong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.340-346
    • /
    • 2009
  • Lithium has only a minimal effect on basal glucose transport activity, instead that lithium markedly increased the sensitivity of glucose transport to insulin by increasing in insulin induced glucose transport activity. And Lithium increases in insulin responsiveness as well. Previous studies has reported this enhancement of lithium to stimulate the glucose transport process is not only limited to insulin, it also induce the increases in the sensitivity of glucose transport by submaximal contractile activity. The preliminary study, however, leads that Lithium possibly improves the responsiveness of glucose transport with maximal muscle contraction. In this study, we investigated the effect of Lithium on contraction for the maximal glucose transport. For the purpose of this study, Epitrochlearis muscles of SD rat were isolated and treated Lithium with electric contraction and/or insulin to activate the maximal glucose transport. The results support that Lithium improves the responsiveness of glucose transport through potentiates contraction and/or insulin induced-glucose uptake in muscle. Consequently Lithium treated with muscle contraction and insulin has the important potential to improve the insulin resistance and diabetes.

Hydroxybrazilin was examined for its effects on glycogen synthesis in primary cultured rat hepatocytes.

  • Moon, Chang-Kiu;Kim, Seonh-Gon;Lee, Soo-Hwan;Ha, Bae-Jin
    • Toxicological Research
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 1992
  • Hydroxybrazilin was examined for its effects on glycogen synthesis in primary cultured rat hepatocytes. At 10-6 M hydroxybrazilin, glycogen synthesis was increased in basal state, but not in insulin stimulated state. However, any signiFicant changes were nor observed at 10-5 M hydroxybrazilin in both states. The glycogen synthesis was rather suppressed at 10-5M hydroxybrazilin. It was also observed that hydroxybrazilin increased insulin sensitivity but not insulin responsiveness at 10-5M concentration. These results suggest that hydroxybrazilin might exert hypoglycemic action through its effects on insulin receptor and post receptor events.

  • PDF

Insulin Resistance of Skeletal Muscle was Recovered by Leptin Injection in vivo, but not in vitro, in High-fat Diet Fed Rats

  • Doh, Kyung-Oh;Park, Jeong-Oak;Jeon, Jeong-Ryne;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.125-130
    • /
    • 2005
  • We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring the glucose transport. Male Wistar rats were fed with chow or high-fat diets for 30 days. Three days before sacrifice, high-fat fed rats were subcutaneously injected with leptin (1 mg/kg body weight) for 3 days. The glucose transports in the epitrochlearis and soleus muscle were not different among the experimental groups under basal state, however these were decreased significantly in the high fat-diet rats under insulin-stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in the epitrochlearis (p<0.05) and soleus (p=0.08). Triglyceride concentration in the soleus muscle was increased significantly in the high fat-fed rats, compared to chow diet rats (p<0.01), and it was decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal and $60{\mu}u/ml$ of insulin with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to high fat diet fed rats recovered impaired insulin responsiveness of the skeletal muscles and muscle triglyceride concentration. However, there was no direct stimulatory effect of leptin on insulin sensitivity of the skeletal muscle in vitro.

Viability and Functions of Alginate-microencapsulated Islets Isolated from Neonatal Pigs

  • Lin, Yi-Juain;Wang, Jui-Ping;Chung, Yu-Tung;Sun, Yu-Ling;Chou, Yu-Chi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.795-801
    • /
    • 2007
  • Patients with Type I diabetes mellitus have been treated with porcine insulin for several decades and pigs have recently been deemed an ideal source of microencapsulated islet cells for clinical xenotransplantation. In this study, neonatal pigs were anesthetized and sacrificed prior to a pancreatectomy. Islet cells were isolated from pancreas via collagenase digestion. Islet cells were separated and collected by hand under microscopic guidance. These cells were suspended in 1.4% sodium alginate solution and encapsulated by dropping them into 1.1% calcium chloride solution and in which the round gel in size was 250-400 ${\mu}m$ in diameter. Viability of the microencapsulated islet cells cultured in medium at $37^{\circ}C$ was assessed by MTT assay. Furthermore, insulin released in response to glucose challenge was investigated using an enzyme-linked immunosorbent assay. Secretion of insulin was low in response to the basal glucose solution (4.4 mM) in medium and was significantly higher in response to the high glucose solution (16.7 mM). The viability of microencapsulated islet cells did not differ significantly over a period of 7 days; that is, the increasing pattern of insulin concentration in the culture medium after glucose stimulation interval day was similar throughout the 7 days cultivation. In summary, experimental evidences indicated that the effects of alginate-microencapsulation prolonged survival of the neonatal porcine islets in vitro cultures and the insulin response to glucose of the islets was maintained.

Leptin stimulates IGF-1 transcription by activating AP-1 in human breast cancer cells

  • Min, Dong Yeong;Jung, Euitaek;Kim, Juhwan;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.385-390
    • /
    • 2019
  • Leptin, an adipokine regulating energy metabolism, appears to be associated with breast cancer progression. Insulin-like growth factor-1 (IGF-1) mediates the pathogenesis of breast cancer. The regulation of IGF-1 expression by leptin in breast cancer cells is unclear. Here, we found that leptin upregulates IGF-1 expression at the transcriptional level in breast cancer cells. Activating protein-1 (AP-1)-binding element within the proximal region of IGF-1 was necessary for leptin-induced IGF-1 promoter activation. Forced expression of AP-1 components, c-FOS or c-JUN, enhanced leptin-induced IGF-1 expression, while knockdown of c-FOS or c-JUN abrogated leptin responsiveness. All three MAPKs (ERK1/2, JNK1/2, and p38 MAPK) mediated leptin-induced IGF-1 expression. These results suggest that leptin contributes to breast cancer progression through the transcriptional upregulation of leptin via the MAPK pathway.