• Title/Summary/Keyword: Insulin like growth factors

Search Result 146, Processing Time 0.029 seconds

Insulin-Like Growth Factors-1 Receptor (IGF-1R) Expression and the Phosphorylation of Endogenous Substrates Lead to Maturation of the Pacific oyster, Crassostrea gigas

  • Park, Su-Jin;Choi, Youn Hee
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.67-72
    • /
    • 2021
  • This study investigated the IGF-1 signal in specific tissues using Pacific oysters artificially matured via water temperature elevation. Pacific oysters were subjected to water temperature elevation from March to June, and 20 were randomly sampled each month. The condition index (CI) and tissue weight rate (TWR) were examined by measuring shell length, shell height, shell width, and soft tissue weight. The IGF-1 signal in tissues (adductor muscle, digestive glands, gills, labial palps, mantle edges, and gonads) was analyzed by sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. From April to June, the TWR of females and males increased from 19.1±2.9 to 21.0±3.6 and 18.2±2.0 to 19.2±2.5, respectively, while the CI remained the same. The IGF-1 signal in each tissue differed. IGF-1 was expressed in the adductor muscle, while tyrosine was expressed in all tissues. The phosphor (p)-ERK and p-AKT activities were high in the adductor muscle, mantle edge, and gonads. IGF-1 signaling affected the growth and maturity of the Pacific oysters examined.

A comparison of bioresorbable membranes alone or in combination with platelet-derived growth factors and insulin-like growth factors on the periodontal healing of the dehiscence defects in dogs. (성견의 열개형 골 결손부에서 흡수성 차단막과 PDGF-BB 및 IGF-I의 혼합 사용시 치주조직의 치유에 미치는 영향)

  • Cho, Kyoo-Sung;Kim, Chang-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.217-234
    • /
    • 1997
  • The purpose of present study is to compare the effect of treatment using $Guidor^{(R)}$ as a barrier membrane in conjunction with platelet-derived growth factor and insulin like growth factors on experimental dehiscence defects. Following the resection of premolar crowns, roots were submerged. After 12 weeks of healing period, experimental dehiscence defects of 4mm in height and 4mm in width were surgically created on the mid-facial aspect of the lower premolar roots in each of 4 adult dogs. After root planning and demineralization of the root surface with citric acid, the control groups received 4% methylcellulose gel only, the test group I received 4% methylcellulose gel and were covered by $Guidor^{(R)}$ and the test group II were treated with PDGF and IGF and 4% methylcellulose gel with $Guidor^{(R)}$ coverage. Histological and histomorphometric analysis following 8 weeks of healing revealed the following results. 1. The new bone formation showed no statistically significant difference in all groups with $0.59{\pm}0.82mm$($14.03{\pm}19.60%$) for control, $0.70{\pm}0.39mm$($16.30{\pm}9.01%$) for group I, $0.87{\pm}0.76mm$($18.74{\pm}16.03%$) for group II. 2. The new cementum formation showed no statistically significant difference in all groups with $0.54{\pm}0.48mm$($l6.38{\pm}14.57%$) for control, $0.95{\pm}0.38mm$($23.43{\pm}9.30%$) for group I, $1.01{\pm}0.75mm$($22.10{\pm}16.ll%$) for gorup II. 3. The root resorption showed statistically significant differences betweenthe control group and all test groups(p<0.05) with $2.11{\pm}0.53mm$($52.93{\pm}12.32%$) for control, $0.63{\pm}0.27mm$($15.32{\pm}7.05%$) for group I, $0.89{\pm}0.33mm$ ($19.26{\pm}7.11%$) for group II. On the bases of these results, there were no statistically difference between treatment using resorbable membrane and resorbable membrane in conjunction with PDGF and IGF in the dehiscence defects, where it was difficult to maintain space. The use of membrane seemed to be more effective in the inhibition of root resorption.

  • PDF

Partial Purification and Quantification of Insulin-like Growth Factor-I from Red Deer Antler (녹용으로부터 Insulin-like Growth Factor-I의 일부정제 및 정량)

  • Gu, Lijuan;Mo, Eun-Kyoung;Fang, ZheMing;Sun, BaiShen;Zhu, XueMei;Sung, Chang-Keun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1321-1329
    • /
    • 2007
  • Deer antler tissue contains the most rapidly growing bone in the animal kingdom. Thus, it is likely that growing antler tissue is a rich source of local paracrine bone-stimulating factors. Growth factors, at least the insulin-like growth factor (IGF), control the bone-remodelling process. In this study, we tried to isolate and purify IGF-I from fresh antler tissue by the routine isolation and purification of protein. The purification involved ammonium sulfate precipitation, DEAE-Sepharose CL-60 ion-exchange chromatography, CM-Sepharose CL-6B ion-exchange chromatography, and Sephadex G-50 chromatography. Purified fractions from each step were analyzed by high-performance liquid chromatography (HPLC), SDS polyacrylamide gel electrophoresis (SDS-PACE), Dot-blot, and Western-blot methods. Furthermore, the quantification of partially purified IGF-I was calculated by enzyme-linked immunosorbent assays (ELISA) using antibody to human recombinant IGF-1. SDS-PAGE analysis of the final fraction yielded two molecular bands and the signal band was at 12 kDa on the Western-blot film. This purified IGF-I fraction showed a peak at retention time of eight min. The quantity of IGF-I in 20 g deer antler tissue as starting weight was calculated using a standard curve to be 2910 ng/ml, and total IGF-I amount is 0.291 g. The results show that IGF-I, which can be found in deer antler, can be partially purified and quantified by classic protein isolation methods.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Regulation of IgE and Type II IgE receptor expression by insulin-like growth factor-1: Role ofSTAT6 and $NF-{\kappa}B$.

  • Koh, Hyun-Ja;Park, Hyun-Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.454-462
    • /
    • 2000
  • Interleukin-4(IL-4) is known to be a major cytokine regulating immunoglobulin E(IgE) response by the induction of IgE production and type II IgE receptor(IgER II: CD23) expression. Recently, however, the role of neuroendocrine factors has been implicated in modulating the IgE response. Among various neuroendocrine growth factors, we investigated the effects of the insulin-like growth factor-1(IGF-1) since IL-4 and IGF-1 share common intracellular signaling molecules, such as the insulin receptor substrate-1/2(IRS-1/2) to induce a specific cellular response. In the human peripheral blood mononuclear cell (PBMC) cultures, IGF-1 was capable of inducing a substantial level of IgE production in a dose-dependent manner. It also noticeably upregulated the IL-4-induced or IL-4 plus anti-CD40-induced IgE production. Similarly, the IGF-1-induced IgE production was enhanced by IL-4 or anti-CD40 in an additive manner, which became saturated at high concentrations of IGF-1. Although IGF-1 alone did not induce IgER II (CD23) expression, it augmented the IL-4-induced surface CD23 expression in a manner similar to the action of anti-CD40. These results imply that IGF-1 is likely to utilize common signaling pathways with IL-4 and anti-CD40 to induce IgE and IgER II expression. In support of this notion, we observed that IGF-1 enhanced the IL-4-induced signal transducers and activators of transcription 6(STAT6) activation and independently induced $NF-{\kappa}B$ activation. Both of these bind to the IgE(C) or IgER II (CD23) promoters. Together, our data suggest that IL-4 and IGF-1 work cooperatively to activate STAT6 and $NF-{\kappa}B$. This leads to the subsequent binding of these transcription factors to the $C{\varepsilon}$ and CD23 promoters to enhance the expression of IgE and IgER II. The observed differential ability of IGF-1 on the induction of IgE vs. IgER II is discussed based on the different structure of the two promoters.

  • PDF

Change of Insulin-like Growth Factor Gene Expression in Chinese Hamster Ovary Cells Cultured in Serum-free Media

  • Park, Hong-Woo;An, Sung-Kwan;Choe, Tae-Boo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.319-324
    • /
    • 2006
  • Although the sera used in animal cell culture media provide the macromolecules, nutrients, hormones, and growth factors necessary to support cell growth, it could also be an obstacle to the production of recombinant proteins in animal cell culture systems used in many sectors of the biotechnology industry. For this reason, many research groups, including our laboratory, have been trying to develop serum-free media (SFM) or serum-supplemented media (SSM) for special or multi-purpose cell lines. The Chinese hamster ovary (CHO) cell, for example, is frequently used to produce proteins and is especially valuable in the large-scale production of pharmaceutically important proteins, yet information about its genome is lacking. Also, SFMs have only been evaluated by comparing growth patterns for cells grown in SFMs with those grown in SSM or by measuring the titer of the target protein obtained from cells grown in each type of medium. These are not reliable methods of obtaining the type of information needed to determine whether an SFM should be replaced with an SSM. We carried out a cDNA microarray analysis to evaluate MED-3, an SFM developed in our laboratory, as a CHO culture medium When CHO cells were cultured in MED-3 instead of an SSM, several genes associated with cell growth were down-regulated, although this change diminished over time. We found that the insulin-like growth factor (IGF) gene was representative of the proteins that were down-regulated in cells cultured in MED-3. When several key supplements - including insulin, transferrin, ethanolamine, and selenium - were removed from MED-3, the IGF expression was consistently down- regulated and cell growth decreased proportionately. Based on these results, we concluded that when an SFM is used as a culture medium, it is important to supplement it with substances that can help the cells maintain a high level of IGF expression. The data presented in this study, therefore, might provide useful information for the design and development of SFM or SSM, as well as for the design of genome-based studies of CHO cells to determine how they can be used optimally for protein production in pharmaceutical and biomedical research.

Changes in the Levels of Insulin-like Growth Factors (IGF-I and IGF-II) in Bovine Milk According to the Lactation Period and Parity

  • Kang, S.H.;Kim, J.U.;Kim, Y.;Han, K.S.;Lee, W.J.;Imm, J.Y.;Oh, S.;Park, D.J.;Moon, Y.I.;Kim, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.119-123
    • /
    • 2007
  • The objectives of this study were to characterize the changes occurring in the levels of insulin-like growth factors (IGF-I and IGF-II) in bovine milk during a one-year lactation period, and to determine the parameters affecting IGF content in bovine milk. Milk was collected individually from lactating Holstein cows (n=70), and IGF-I and -II levels were determined via radioimmunoassay, using 125I after acid-ethanol treatment. The proximate compositions of the milk samples were determined using a near-infrared milk analyzer. The data were analyzed by the GLM and CORR procedures using SAS software to determine significant differences (p<0.05) occurring within groups (dairy farms, lactation periods, season, and parity). We noted an approximately six-fold reduction in the IGF-I concentration (from 2,462.7 to 353.0 ng/ml) and a three-fold drop in the IGF-II concentration (from 929.1 to 365.7 ng/ml) in the bovine colostrum, between 6 h after parturition and 18 h after parturition. IGF-I and -II content, measured at the early, middle, and late stages of lactation did not change significantly throughout the entirety of the lactation period. Interestingly, parity did not significantly affect IGF-I content, but did significantly affect IGF-II content between the primiparous and multiparous cows. We also found there were no significant relationships between IGF-I and total protein content or somatic cell counts (p<0.05).

Distribution of Insulin-Like Growth Factor-Binding Proteins(IGFBPs) and IGFBP-3 Proteolysis in Noninsulin-Dependent Diabetes Mellitus Serum (인슐린 비의존형 당뇨병 환자의 혈청 중 Insulin-Like Growth Factor-Binding Proteins(IGFBPs)의 분포 및 IGFBP-3의 분해)

  • Lee, Hwa-Jin;Kim, Sung-Hyun;Kwon, Mi-Jin;Nam, Taek-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.285-290
    • /
    • 1997
  • The insulin-like growth factors(IGFs) are bound to several binding proteins(IGFBPs) that appear to regulate IGF transport, receptor binding, and its action. The concentration of these peptides are altered by catabolic conditions. To determine IGF-I and IGFBP levels in noninsulin-dependent diabetes mellitus (NIDDM), sera was obtained from 5 patients and 7 controls. Serum levels of IGF-I in NIDDM were lower than those in either of the controls. By western immunoblot analysis, especially IGFBP-1 levels are increased, whereas IGFBP-3 levels decreased and their fragments was increased in NIDDM serum. IGFBP-3 proteolytic activity in NIDDM sera was inhibited by phenylmethylsulfonylfluoride (PMSF), aprotinin, and ethylenediaminetetraacetic acid(EDTA). This pattern of inhibition was consistent with a metal-dependent serine protease. By gelatin zymography, these proteolytic enzymes were identified as the size of 97 and 69 kDa. IGFBP-1, which is primarily insulin regulated, was increased in NIDDM and may modulate circulating IGF-I levels by regulating capillary passage of IGF-I. IGFBP-3 proteolysis markedly reduces its affinity for the IGFs, particularly for IGF-I. This accelerates their kinetics of dissociation, thereby increasing the proportions of IGF-I in free form and its availability to the cells.

  • PDF

Studies on Effects of Ea4-Peptide of Rainbow Trout Pro-IGF-I on Heart Development, Vasculogenesis and Hematopoiesis in Fish Embryos by Transgenesis

  • Chun, Chang-Zoon;Maria J. Chen;Thomas T. Chen
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.20-21
    • /
    • 2003
  • Insulin-like growth factors (IGFs) are mitogenic peptide hormones that regulate embryonic development, postnatal growth and cellular differentiation in vertebrates IGFs are initially translated as pre-pro-peptides and then proteolytically processed to yield the mature IGFs and E-peptides. Like the C-peptide of pro-insulin, the E-peptides of pro-IGFs are generally believed to possess little or no biological activity other than their potential roles in the biosynthesis of the mature IGFs. Like human IGF-1, previous studies in our laboratory showed that the recombinant trout Ea4-peptide of pro-IGF-1 exhibited a dose-dependent mitegenic activity in cultured BALB/3T3 fibroblasts and other non-oncogenic transformed cells (Tian et al., 1999) We have also shown by in vitro and in vivo studies that Ea4-peptide possessed novel anti-tumor activities (Chen et al., 2002, Kuo and Chen, 2002; Kuo and Chen 2003). Recent results of studies conducted in chorionicallantoic membrane of developing chicken embryos revealed that Ea4-peptide of trout pro-IGF-1 also possesses a dose-dependent antiangiogenic activity. Together these results raised the question whether Ea4-peptide of trout pro-IGF-1 may affect heart and blood vessel development and hematopoiesis in fish embryos. (중략)

  • PDF

Expression of IGF-1 and Its Receptor Genes in the Oocytes and Preimplantation Embryos in Mouse (생쥐 난자와 착상전 초기배아에서 IGF-1과 IGF-1 수용체 유전자 발현)

  • 김종월;김성례;윤현수;이정헌;채영규;김문규
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • Insulin-like growth factors (IGF-1 and IGF-2) play an important regulatory role in premplantation embryonic development. To study the role of IGF-1 during premplantation embryonic development in mouse, the presence of mRNA transcripts for IGF-1 and IGF-lR in the oocytes and preimplantation embryos was examined. In this study, the transcripts of IGF-1 was detected in oocytes using primers for IGF-1. The PCR products were identified by Msp I restriction enzyme digest. We revealed that the transcripts of IGF-1 and IGF-1R were presented in the oocytes and preimplantation embryos. The highest mRNA levels in GV stage oocytes were decreased at 4- or 8-cell stage and then reincreased upto blastocyst. The presence of IGF-1 and IGF-lR in GV-oocytes suggests that the transcripts in the early stage embryos were derived from maternal genome. Additionally, the presence of IGF-1 and IGF-lR in the oocytes and preimplantation embryos suggests that IGF-1 plays an autocrine role during preimplantation embryonic development through IGF-lR as a signalling pathway.

  • PDF