• Title/Summary/Keyword: Insulin Resistance

Search Result 649, Processing Time 0.021 seconds

Can antioxidants be effective therapeutics for type 2 diabetes?

  • Park, Soyoung;Park, So-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.2
    • /
    • pp.83-94
    • /
    • 2021
  • The global obesity epidemic and the growing elderly population largely contribute to the increasing incidence of type 2 diabetes. Insulin resistance acts as a critical link between the present obesity pandemic and type 2 diabetes. Naturally occurring reactive oxygen species (ROS) regulate intracellular signaling and are kept in balance by the antioxidant system. However, the imbalance between ROS production and antioxidant capacity causes ROS accumulation and induces oxidative stress. Oxidative stress interrupts insulin-mediated intracellular signaling pathways, as supported by studies involving genetic modification of antioxidant enzymes in experimental rodents. In addition, a close association between oxidative stress and insulin resistance has been reported in numerous human studies. However, the controversial results with the use of antioxidants in type 2 diabetes raise the question of whether oxidative stress plays a critical role in insulin resistance. In this review article, we discuss the relevance of oxidative stress to insulin resistance based on genetically modified animal models and human trials.

Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet

  • Choi, Ha-Neul;Kang, Min-Jung;Lee, Soo-Jin;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.544-549
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Obesity-associated insulin resistance is a strong risk factor for type 2 diabetes mellitus. The aim of this study was to investigate the effect of myricetin on adiposity, insulin resistance, and inflammatory markers in mice with diet-induced insulin resistance. MATERIALS/METHODS: Five-week-old male C57BL/6J mice were fed a basal diet, a high-fat, high-sucrose (HFHS) diet, or the HFHS diet containing 0.06% myricetin or 0.12% myricetin for 12 weeks after a 1-week adaptation, and body weight and food intake were monitored. After sacrifice, serum lipid profiles, glucose, insulin, adipocyte-derived hormones, and proinflammatory cytokines were measured. The homeostasis model assessment for insulin resistance (HOMA-IR) was determined. RESULTS: Myricetin given at 0.12% of the total diet significantly reduced body weight, weight gain, and epidydimal white adipose tissue weight, and improved hypertriglyceridemia and hypercholesterolemia without a significant influence on food intake in mice fed the HFHS diet. Serum glucose and insulin levels, as well as HOMA-IR values, decreased significantly by 0.12% myricetin supplementation in mice fed the HFHS diet. Myricetin given at 0.12% of the total diet significantly reduced serum levels of leptin, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) in mice fed the HFHS diet. CONCLUSIONS: These findings suggest that myricetin may have a protective effect against diet-induced obesity and insulin resistance in mice fed HFHS diet, and that alleviation of insulin resistance could partly occur by improving obesity and reducing serum proinflammatory cytokine levels.

Effects of Ovariectomy on Insulin Resistance and β-Cell Function and Mass

  • Choi, Soo-Bong;Park, Chun-Hee;Jun, Dong-Wha;Jang, Jin-Sun;Park, Sun-Min
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.367-373
    • /
    • 2004
  • The prevalence of type-2 diabetes increases remarkably in post-menopausal women, possibly because insulin secretion fails to compensate for the insulin resistance induced in various tissues by estrogen insufficiency. However, this has not been fully defined. Therefore, the present study investigated whether an ovariectomy (OVX) would increase insulin resistance and decrease the $\beta$-cell function and mass in female rats with and without a $90\%$ pancreatectomy (Px). Female rats aged 15 weeks were divided into four groups: 1) OVX + Px, 2) SOVX (sham operation of OVX) + Px, 3) OVX + SPx (sham operation of Px), and 4) SOVX + SPx, and given a $30\%$ fat diet for 8 weeks. At the end of the experimental period, the islet function and insulin resistance were determined using a hyperglycemic clamp and a euglycemic hyperinsulinemic clamp, respectively. The OVX only increased the body weight in the SPx rats, which was partially related to the food intake. Yet, the OVX did increase the peripheral insulin resistance, while the Px increased this resistance further. The OVX and Px both exacerbated the islet function, as measured by the insulin secretion pattern, while delaying and decreasing the first-phase insulin secretion. The OVX only decreased the proliferation of $\beta$-cells in the Px rats, while increasing apoptosis in both the Px and SPx rats. As a result, the OVX decreased the $\beta$-cell mass in the Px rats, but increased the mass in the SPx rats. In conclusion, an OVX was found to accelerate the development and progression of diabetes by increasing the insulin resistance and decreasing the $\beta$-cell mass. Therefore, menopause can be a risk factor for type-2 diabetes, mainly due to a deceased proliferation of $\beta$-cells.

Relationship between hematologic parameters related to systemic inflammation and insulin resistance-associated metabolic parameters in women with polycystic ovary syndrome

  • Minkyung Cho;Suji Kim;Sungwook Chun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.206-212
    • /
    • 2023
  • Objective: The aim of the present study was to evaluate the associations between hematologic parameters related to systemic inflammation and insulin resistance-associated metabolic parameters in women with polycystic ovary syndrome (PCOS). Methods: Eighty-two women between the ages of 18 and 35 years who were diagnosed with PCOS were included in this study. A 2-hour 75-g oral glucose tolerance test (OGTT) was administered to all study participants; fasting and postprandial glucose and insulin levels were measured simultaneously during the 2-hour OGTT. Hematologic parameters were derived from a standard complete blood count and a differential count of fasting-state blood samples. The correlations between hematologic parameters and insulin resistance-associated clinical and metabolic parameters were evaluated using the Spearman rank correlation and partial correlation coefficients. Hematologic parameters related to systemic inflammation were compared between the two groups, categorized by the presence or absence of insulin resistance. Results: Significant differences in the absolute neutrophil count, absolute monocyte count, platelet count, and neutrophil-lymphocyte ratio were found between the insulin-resistant group and insulin-nonresistant group. Correlation analysis found that all hematological parameters, except for the platelet-lymphocyte ratio, were associated with at least one insulin resistance-associated metabolic parameter. However, these significant correlations between hematological and metabolic parameters were attenuated after controlling for the effects of other covariates using partial correlation analysis. Conclusion: The association between hematologic parameters indicative of systemic inflammation and insulin resistance-associated metabolic parameters seems to be strongly influenced by other anthropometric covariates in women with PCOS.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

The Effects of Ginsenoside Re on High-Fat Diet induced Insulin Resistance in Muscle (Ginsenoside Re가 골격근의 고지방식 유도 인슐린 저항성에 미치는 영향)

  • Jung, Su-Ryun
    • Korean Journal of Exercise Nutrition
    • /
    • v.14 no.2
    • /
    • pp.75-80
    • /
    • 2010
  • We evaluated the effect of the ginsenoside Re on insulin resistance of glucose transport in muscles of rats made insulin resistant with a high fat diet. After a week of adaptation period to the laboratory environment, 40 male wistar rats were randomly assigned into 2 groups (Chow diet group; CD, n = 20, High fat diet group; HFD, n = 20). After 5-week of high fat diet, Food was removed after 6:00 PM the day before the experiment. The following morning, rats were anesthetized by an intraperitoneal injection of pentobarbital sodium (50 mg/kg body wt), and the soleus muscles were removed. Before incubation, the soleus muscle was split longitudinally into strips with an average weight of 15~20 mg. After the muscle dissection was completed, the abdominal cavity was opened, and the epididymal, mesenteric, and retroperitoneal fat pads were removed and weighed. Treatment of muscles with ginsenoside Re alone had no effect on glucose transport. The high fat diet resulted in ~50% decreases glucose transport rate in soleus muscles. Treatment of muscles with ginsenoside Re in vitro for 90 min completely reversed the high fat diet-induced insulin resistance of glucose transport in soleus muscles. This effect of ginsenoside Re is specific for insulin stimulated glucose transport, as Re treatment did not reverse the high fat diet-induced resistance of skeletal muscle glucose transport to stimulation by contraction. Our results show that the ginsenoside Re induces a remarkably rapid reversal of high fat diet-induced insulin resistance of muscle glucose transport.

Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights

  • Tae Hyun Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.276-285
    • /
    • 2024
  • Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.

Obesity and Insulin Resistance in Childhood (소아에서의 비만과 인슐린 저항성)

  • Choi, Kwang Hae
    • Journal of Yeungnam Medical Science
    • /
    • v.29 no.2
    • /
    • pp.73-76
    • /
    • 2012
  • More and more children are becoming obese and overweight due to several factors that include a high energy density in the diet (a high fat intake) and low energy expenditure. Consequently childhood obesity is becoming a significant health problem. Fat tissue releases many cytokines such as resistin, tumor necrosis factor-${\alpha}$, leptin, interleukin-6. These adipocytokines induce obesity-related insulin resistance. Insulin resistance is a key component of obesity-related metabolic problems such as hypertension, type 2 diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, acanthosis nigricans and polycystic ovarian syndrome. This review article focused on insulin resistance and its related metabolic diseases.

  • PDF

Insulin Resistance in Late Pregnant Rats (임신 후반기 흰쥐의 인슐린 저항성과 그 기전)

  • Chun, Myung-Heup;Kim, Yong-Woon;Park, So-Young;Kim, Jong-Yeon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.319-330
    • /
    • 1995
  • The influence of normal late pregnancy on insulin action and insulin secretion was studied in the Sprague-Dawley female rats. On 20th day after mating, intravenous glucose tolerance test(IVGTT) was performed in non pregnant control and pregnant rats. As results of IVGTT, glucose disappearance rate was not significantly different in both groups, but secretory response of insulin was significantly(p<0.05) increased in pregnant rat. And the ratio of insulin/glucose was significantly higher in pregnant rats, which means existence of insulin resistance. These insulin resistance was overcomed by increased secretory response of pancreatic insulin. Insulinogenic index(${\Delta}$ insulin/glucose - 5 min) was highly significantly (r=0.62, p<0.01) correlated with progesterone concentration. Glycogen level and amounts of $^{14}C$-glucose incorporated into glycogen after IVGTT were significantly(p<0.05) decreased in the liver, but were not changed significantly in soleus. Glycogen synthase activity of soleus and liver was not differ significantly in the both groups. Insulin binding at varying concentrations of insulin to crude membrane of pregnant liver was not significantly different from control. In conclusions, although these pregnant rats were normal glucose tolerance due to increased secretory response of insulin, that was correlated with progesterone concentration, pregnant rat had insulin resistance. The mechanisms of insulin resistance were not related to defect of insulin binding phase and glycogen synthase, but suggest pre-receptor and/or postreceptor phase.

  • PDF

Hesperidin Ameliorates TNF-${\alpha}$-Mediated Insulin Resistance in Differentiated 3T3-L1 Cells

  • Chae, Byeong Suk;Shin, Tae Yong
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.254-260
    • /
    • 2012
  • Adipose inflammation is linked to the development of insulin resistance and type 2 diabetes. Hesperidin (HES) is a flavonoid with antioxidant, anti-inflammatory and anti-diabetic properties. However, whether HES improves inflammation-mediated insulin resistance in adipose tissues remains unclear. The purpose of this study was to investigate whether HES attenuates inflammation-mediated insulin resistance in adipose tissue. Herein, RAW 264.7 cells and differentiated 3T3-L1 adipocytes were pretreated with various concentrations of HES in complete media for 1 h and then cultured in the presence or absence of LPS or TNF-${\alpha}$. Our results demonstrated that HES remarkably inhibited LPS-induced production of IL-6, TNF-${\alpha}$, and NO by RAW 264.7 cells in a dose-dependent manner. Also, HES inhibited TNF-${\alpha}$-induced production of IL-6 and $PGE_2$ in differentiated 3T3-L1 cells, while upregulated TNF-${\alpha}$-suppressed expression of adiponectin and PPAR-${\gamma}$ mRNA. These findings suggest that HES may ameliorate inflammation-mediated insulin resistance in adipose tissue.