• 제목/요약/키워드: Insulation properties

검색결과 904건 처리시간 0.023초

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.

갈옷과 흰옷 및 그 의복형태의 차가 착용감에 미치는 영향 (The Effect of Differences between Gal-Ot and Undyed Clothing and clothing Types on Wear Sensation)

  • 박순자;손원교
    • 한국의류학회지
    • /
    • 제23권1호
    • /
    • pp.30-41
    • /
    • 1999
  • This study was conducted to verify the advantages of Gal-Ot. Gal-Ot is defined the clothings dyed with persimmon juice. Firstly the physical properties of fabrics were examined. Secondly the wear tests were conducted. The wear tests were performed in climatic chamber controlled 3$0^{\circ}C$ air temperature 50$\pm$5% R.H and 0.2m/s air movement. Four women subjects participated in this experiment and 4 times experiments were performed per one subject. The expeimental schedule was planned following 4 steps that is sedentary posture during 30 minutes-walking the 5。slope treadmill by 70m/min during 20 minutes-sedentary posture during 20 minutes-standing posture on toward the blowing wind during 10 minutes. The results obtained is as folows : The insulation of fabric was increased with dyeing with persimmon juice. The air permeability of fabric was remarkably increased with dyeing with persimmon juice. The mean skin temperatures of subjects were apt to be higher in wearing Gal-Ot than undyed clothing. The clothing micro temperature of subjects were slightly inclined to become lower in wearing Gal-Ot than undyed clothing, The clothing micro humidity was decreasee when: the subjects were gal-Ot than wore undyed clothing, And then it brought about more comfortable on wear sensation. The differences of physiological reactions were not consistent between clothing types except for sweat rate on the back. This result may be attributed the to complex experimental schdules consisted of four steps and to a little difference between open type and close type. However I consider that the clothing type of Gal-Ot is suitable for open type because Gal-Ot is summer wear for blocking the sultry heat.

  • PDF

와이불 수명지수에 의한 고전압 케이블의 전압열화 측정값의 선형성 확인 (Linearity Verification of Measured Voltage Deterioration of High Voltage Cable based on Weibull Lifetime Index)

  • 엄기홍;이관우
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.227-232
    • /
    • 2016
  • 전력 수요량은 매년 증가추세에 있으며, 발전소에서 동작하는 모든 장비들과 대용량의 장거리 전력수송을 위한 장비들은 전력 소비자들이 기대하는 바 신뢰할 수 있는 수준에서 완전한 상태로 동작하여야 한다. 일반적으로, 고전력 송전을 위하여 사용되고 있는 케이블은 동작수명이 30년 이라고 제작 시에 선언된다. 케이블은 동작을 시작함과 동시에 성능이 악화되는 열화과정(케이블의 전기적 특성이 악화되는)이 시작된다. 열화로 인한 신뢰성의 손상이 발생함에도 불구하고, 동작상태의 신뢰성을 진단을 받지 않았기 때문에, 언제 불의의 사고를 초래할지 예측을 할 수 없을 만큼 위험한 상태에서 동작을 하고 있는 실정이다. 우리는 케이블의 열화과정을 진단하기 위하여 진단 장비를 제작하였고, 충청남도 태안의 (주)서부발전에 설치하여 시운전 하고 있는 중이다. 우리는 측정장비를 이용하여 추출한 데이터를 얻은 결과를 시간에 따라 변동 하는 그래프로 표시하여 분석한 특성을 이전 논문들에서 제시하였다. 이 논문에서는 이전 논문에서의 측정값으로 나타낸 그래프가 Weibull 확률분포에 의한 열화 이론과 일치하는 지를 확인하고, 결과를 제시한다.

EPR의 가속 열화에 의한 기계적 특성 및 통계적 평가 (Mechanical Properties and Statistical Evaluation of EPR According to the Accelerated Degradation)

  • 김지연;양종석;이길수;성백용;방정환;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제28권8호
    • /
    • pp.501-507
    • /
    • 2015
  • In this paper, EPR (ethylene propylene rubber) insulation material was accelerated degradation test at $121^{\circ}C$, $136^{\circ}C$, $151^{\circ}C$, and experiment the typical EAB (elongation at break) at mechanical characteristics analysis. It is shown that the failure-time at the point of 50% of the initial value of Elongation rate to obtain the activation energy. The failure-time was shown each 5,219 hr, 3,165 hr, and 668 hr at three temperatures. In order to derive the activation energy, Arrhenius methodology was applied. Also, we got the Arrhenius plot from three accelerated temperatures. The activation energy values got 0.98 eV from EAB test. The experimental data were evaluated for estimating the probability density, and the suitable distribution by using statistical program MINITAB. It is shown that EAB data by the acceleration thermal degradation is most suitable for the Weibull distribution.

불평등전계에서 $SF_6/CF_4$ 혼합 가스의 SLI, AC 절연내력 특성 (SLI, AC Breakdown Voltage Characteristics of $SF_6/CF_4$ Mixtures Gas in Nonuniform Field)

  • 황청호;성허경;허창수
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.245-251
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field was performed. The experiments were carried out under AC voltage and standard lightning impulse(SLI) voltage. Breakdown characteristics were investigated for $SF_6/CF_4$ mixtures when AC voltages and standard lighting impulse voltage was applied in a needle-plane. The needle-plane electrode whose gap distance was 3 mm were used in a test chamber. $SF_6/CF_4$ mixtures contained from 0 to 100% $SF_6$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field may be influenced by defects like needle-shaped protrusions. In case of slowly rising SLI voltage and AC voltage it is enhanced by corona-stabilization. This phenomena caused by the ion drift during streamer development and the resulting space-charge is investigated. In non-uniform field under negative SLI voltage the breakdown voltage was increase linearly but under positive SLI voltage the breakdown voltage increase non-linearly. The breakdown voltage in needle-plane electrode displayed N shape characteristics for increasing the content of $SF_6$ at AC voltage. $SF_6/CF_4$ mixture has good dielectric strength and arc-extinguishing properties than pure SF6. This paper presents experimental results on breakdown characteristics for various mixtures of $SF_6/CF_4$ at practical pressures. We could make an environment friendly gas insulation material with maintaining dielectric strength by combing $SF_6\;and\;CF_4$ which generates a lower lever of the global warming effect.

자켓의 압력 및 두께 변화에 의한 진공 자켓 밸브의 유입 열량 변화에 관한 연구 (A Study on the Heat Flow Change of Vacuum Jacket Valve According to Pressure Change and Jacket Thickness)

  • 김시범;이권희;전락원;도태완
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.232-237
    • /
    • 2011
  • 최근 초저온 밸브 관련 산업의 급속한 발전과 함께 초저온 밸브에 대한 지속적인 연구가 이루어지고 있고 특히, 기계, 조선, 반도체 및 디스플레이 산업, 항공 우주산업분야의 비약적인 발전과 사용자의 요구 등으로 인하여 초저온용 밸브의 고성능화가 되고 있는 추세이나, 진공 단열에 관한 초저온 응용 장비들에 대한 기술개발 및 연구는 미흡한 실정이다. 본 연구에서는 초저온용 진공자켓밸브의 스템 외부에 자켓 배관을 설치 한 후 낮은 압력을 유지함으로써 외부로부터 자켓 내부로의 유입 열전달량을 감소시키는 것에 주안점을 두었고, 효과적인 전열 제어를 위하여 외부로부터 자켓 내부로의 유입 열전달량을 감소시킬수 있는 자켓 내부의 압력과 자켓부의 두께 변화에 관한 열전달 특성을 3차원 수치해석적인 방법으로 연구하여 고찰하였다.

5층열장벽 피막의 고온 물성에 관한연구 (A Syudy on the High Temprerties of the 5Layer Functionally Gradient Thermal Barrier Coating)

  • 한주철;정철;송요승;윤종구;노병호;이구현
    • 한국표면공학회지
    • /
    • 제31권1호
    • /
    • pp.12-23
    • /
    • 1998
  • The Thermal Barrier Coating(TBC) has been used to improve the heat barrier and tribological properties of the aircraft engine and the automobile engine in high temperature. Especially, the high temperature tribological propertied of the cylinder haed and the piston crown of diesel engine was emphasized. Therefore, the purpose of this work was to evaluate the microstructure, tribological propeer in high tempearmal shock resistance and bonding strength of five layer functionally gradient TBC for the applications. The five layerwere composed with 100% ceramic insulating later, 75(ceramic):25 (metal) layer, 50:50 layer, 25:75 layer and 100% metal bonding layer to redude the thermal stress. the YSL and MSL poweders were the insulation ceramics powers. The NiCrAly, Inconel625 and SUS powders were the bonding and mixingg powders for plasma spray process. According to the result of high temperature wear test, the wera resistance of YSZ/NiCrAlY siytem was most out standing at 600 and $800^{\circ}C$. At $400^{\circ}C$, the wear resistance of YSZ/Inconel system was better than others. Wear volume at other temperature because of the low temperature degration of zirconia. The thermal shock mechanism of 5 later is the vertical crack gegration in insulating layer. this means that the initial cracks were generated in the top layer, and then developed into the composite layers during thermal shock test. Finally, these cracks werereached to the interface of coating and substrate and also, these vertioal cracks join with the horizontal cracks of the each layers. The bonding strength of YSZ/NiCrAlY and YSZ/Inconel 5 layer system is better than other 5layer systems. The theramal shock resistance of thermal barrier coating s with 5 layer system is better than that of 3 layers and 2 layers.

  • PDF

Advanced Low-k Materials for Cu/Low-k Chips

  • Choi, Chi-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.71-71
    • /
    • 2012
  • As the critical dimensions of integrated circuits are scaled down, the line width and spacing between the metal interconnects are made smaller. The dielectric film used as insulation between the metal lines contributes to the resistance-capacitance (RC) time constant that governs the device speed. If the RC time delay, cross talk and lowering the power dissipation are to be reduced, the intermetal dielectric (IMD) films should have a low dielectric constant. The introduction of Cu and low-k dielectrics has incrementally improved the situation as compared to the conventional $Al/SiO_2$ technology by reducing both the resistivity and the capacitance between interconnects. Some of the potential candidate materials to be used as an ILD are organic and inorganic precursors such as hydrogensilsequioxane (HSQ), silsesquioxane (SSQ), methylsilsisequioxane (MSQ) and carbon doped silicon oxide (SiOCH), It has been shown that organic functional groups can dramatically decrease dielectric constant by increasing the free volume of films. Recently, various inorganic precursors have been used to prepare the SiOCH films. The k value of the material depends on the number of $CH_3$ groups built into the structure since they lower both polarity and density of the material by steric hindrance, which the replacement of Si-O bonds with Si-$CH_3$ (methyl group) bonds causes bulk porosity due to the formation of nano-sized voids within the silicon oxide matrix. In this talk, we will be introduce some properties of SiOC(-H) thin films deposited with the dimethyldimethoxysilane (DMDMS: $C_4H_{12}O_2Si$) and oxygen as precursors by using plasma-enhanced chemical vapor deposition with and without ultraviolet (UV) irradiation.

  • PDF

Hydroxy Silicone Oil이 실리콘 고무의 절연특성에 마치는 영향 (Effects of Hydroxy Silicone Oil on Insulation Properties of Silicone Rubber)

  • 강동필;박효열;안명상;김대환;이후범;오세호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.51-54
    • /
    • 2002
  • 폴리머 애자용 Shed 재료의 전기방전에 대한 열화내성과 표면발수성은 제품의 장기성능에 있어서 가장 중요한 물성들이다. 그러나 무기보강재의 첨가량이 많아 무결점 성형성을 만족하도록 하기 위해서 Process Oil의 사용이 불가피한데 사용하는 오일의 종류와 양에 따라 옥외절연물의 장기성능에 영향을 주는 표면발수성이나 방전내성은 크게 차이가 나는 것으로 밝혀져 있다. 본 논문에서는 화학적 구조와 점도가 다른 몇 종의 hydroxy silicone oil(HS 오일)을 혼련 (kneading) 하는 과정에 첨가하여 이들 오일의 종류와 양이 고무의 기본적인 물성, 발수성, 방전열화내성, 내트래킹성 등에 어떻게 영향을 주는가를 조사하였다. 코로나 처리시간에 따라서 접촉각의 저하정도와 코로나 처리 후 경과시간에 따른 발수성의 회복특성을 조사하였다. HS 오일의 접도에 따라 초기발수성, 발수성 회복특성의 차이가 많았다. 점도가 낮을수록 초기 발수성 저하는 크며 회복속도는 빠른 반면 점도가 높을수록 초기 발수성 저하는 작은 반변은 발수성 회복속도는 다소 느리게 나타났다 내트래킹성 결과는 점도가 높을수록 우수한 특성을 보였다. 결론적으로 폴리머 애자용 실리콘고무의 컴파운딩에서 실리콘오일의 선택은 성형작업성, 발수성회복특성, 열화내성 외에 가격 등을 고려하여 최적화가 필요하다.

  • PDF

Process Modeling and Optimization Studies in Drying of Current Transformers

  • Bhattacharya, Subhendu;D'Melo, Dawid;Chaudhari, Lokesh;Sharma, Ram Avatar;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.273-277
    • /
    • 2012
  • The vacuum drying process for drying of paper in current transformers was modeled with an aim to develop an understanding of the drying mechanism involved and also to predict the water collection rates. A molecular as well as macroscopic approach was adopted for the prediction of drying rate. Ficks law of diffusion was adopted for the prediction of drying rates at macroscopic levels. A steady state and dynamic mass transfer simulation was performed. The bulk diffusion coefficient was calculated using weight loss experiments. The accuracy of the solution was a strong function of the relation developed to determine the equilibrium moisture content. The actually observed diffusion constant was also important to predict the plant water removal rate. Thermo gravimetric studies helped in calculating the diffusion constant. In addition, simulation studies revealed the formation of perpetual moisture traps (loops) inside the CT. These loops can only be broken by changing the temperature or pressure of the system. The change in temperature or pressure changes the kinetic or potential energy of the effusing vapor resulting in breaking of the loop. The cycle was developed based on this mechanism. Additionally, simulation studies also revealed that the actual mechanism of moisture diffusion in CT's is by surface jumps initiated by surface diffusion balanced against the surrounding pressure. Every subsequent step in the cycle was to break such loops. The effect of change in drying time on the electrical properties of the insulation was also assessed. The measurement of capacitance at the rated voltage and one third of the rated voltage demonstrated that the capacitance change is within the acceptance limit. Hence, the new cycle does not affect the electrical performance of the CT.