• Title/Summary/Keyword: Insulation life

Search Result 285, Processing Time 0.028 seconds

A Study on Sample manufacturing and Performance Evaluation for Vibration Insulation Material of Noise Barrier for High-Speed Railway (고속철도구간 방음벽 제진재 시험제작 및 성능평가에 관한 연구)

  • Kim Soon-Cheol;Kang Jeong-Ok;Han Kwang-Seob;Jeon Byung-Chan;Han Jong-Moon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.522-529
    • /
    • 2005
  • The commercial service of KTX from April 1st 2004 has realized that whole country has shrunk into half-day life zone and it opened the times of speed. However, some technical problems unexpected before service have been raised and, among them, the noise generation at train passing was claimed by the residents living nearby the track and it is often publicized by the broadcastings and newspapers. In case where the residential area is close to the track, the installation of noise barrier at trackside is the general measures for noise reduction on bridge section and earthwork section. In case of KTX project, such measures were actually taken without any exception; however, the noise level is still high. In this study, analysis for the reason of higher noise level in spite of which the noise barriers are being installed was carried out, the sample of insulation material effective for noise barrier was manufactured and the performance of the insulation material was evaluated to verify its effectiveness

  • PDF

A Study on the Breakdown Mechanism of Rotating Machine Insulation

  • Kim, Hee-Gon;Kim, Hee-Soo;Park, Yong-Kwan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.71-76
    • /
    • 1997
  • A lot of experiments and analyses have been done to determine the aging mechanism of mica-epoxy composite material used for large generator stator windings in order to estimate remaining life of the generator for last decades. After degrading artificially the mica-epoxy composite material, the surface analysis is performed to analyze breakdown mechanism of insulation in air and hydrogen atmosphere; i) In the case of air atmosphere, it is observed that an aging propagation from conductor to core by partial discharge effect and the formation of cracks between layers is widely carbonized surface. ii) In case of hydrogen atmosphere, the partial discharge effect is reduced by the hydrogen pressure (4kg/$\textrm{cm}^2$). Potassium ions forming a sheet of mica is replaced by hydrogen ions, which can lead to microcracks. It is confirmed that the sizes of crack by SEM analysis are 10∼20[$\mu\textrm{m}$] in length under air, and 1∼5[$\mu\textrm{m}$] in diameter, 10∼50[$\mu\textrm{m}$] in length under hydrogen atmosphere respectively. The breakdown mechanism of sttor winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the postassium ions of mica components are replaced by H\ulcorner, H$_3$O\ulcorner at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium enable creation of voids and cracks due to thermal, mechanical, electrical and environmental stresses.

  • PDF

The Energy Saving Effect and Economic Assessment of Office Building according to the Building Envelope Remodeling (사무소 건물의 외피 리모델링에 따른 에너지절감효과 및 경제성 분석)

  • Choi, Seon woo;Kim, Ji Yeon;Park, Hyo soon;Kim, Jun Tae
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • The Korean government has introduced building regulations with improved energy conservation measures, including higher insulation levels for building envelope. However, there are many existing buildings that tend to consume more energy for heating and cooling than new buildings, as they were built under the former regulations with relatively higher U-values of walls and glazing. In order to improve energy efficiency in existing buildings, green remodelling of building envelope and building services are required. For existing buildings, building services improvements have been achieved through energy service company(ESCO), but much attention has not been paid to building envelope improvements with various reasons, such as uncertainty of energy saving effect design issues and costs. The aim of this study is to evaluate the impact of building envelope improvements in a typical commercial building on its heating and cooling energy loads. The results show that the improvement of glazing with lower U-values has the highest energy saving effects, followed by wall, roof and floor, under the condition of same level of insulation improvements. However, high insulated glazing increased LCC because of higher initial investment costs.

A Diagnostic Technique for Power Distribution Line Facilities by the Corona Detector (코로나 검출기를 이용한 배전설비 진단기법)

  • Cho, Yong-Sang;Song, Gyu-So;Choi, Yu-Seong;Park, Tae-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.588-593
    • /
    • 2011
  • The airpollutant may accelerate degradation of power line facilities, and may reduce the life of the electric facilities. In case of korea, there are a tendency that the density of air pollution may be increased by industrial development. while lack of research activity and establishment of a countermeasure on this issue. Recently the occurrence of electricity failure have been reduced on the power transmission and distribution lines. but the occurrence of electricity failure by insulator itself has been increased. It means that we should have develop more clear technique for detection of the wrong insulator. In this study to provide a method for detection of the insulator failure or effective management of the troubled insulator, we analyze the chemical composition of the insulator which used on power distribution line at the sea side locations. To define the relation between insulation and corona intensity, we design and develop an corona detector. We define the variation of insulation by pollution changes on the insulator and verify quantitative relation between corona and insulations using the corona detector.

Assessment of 23 kV Capacitive Coupler for On-line Partial Discharge Measurements

  • Jeong, J.Y.;Kang, D.S.;Sun, J.H.;Heo, J.C.;Park, C.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.123-130
    • /
    • 2009
  • The partial discharge (PD) measurement is a very effective method to assess the winding insulation condition of high-voltage machines, since most of the insulation failure processes are directly or indirectly caused by PD. On-line PD measurements, which can detect insulation defects of winding in the early stages on rotating machines in operation, have been accepted as the most important technique. The epoxy mica capacitive coupler is currently and extensively used for on-line detection of PD pulses of high-voltage rotating machines. To evaluate the feasibility of developing a capacitive coupler that is easier to manufacture at a lower cost compared to epoxy mica couplers, a 100pF capacitive coupler made of ceramic material is designed, fabricated and tested for on-line PD measurements of 23 kV electrical machines. A series of electrical tests and accelerated aging tests are performed on the ceramic coupler to evaluate the performance requirements, long-term reliability and thermal stability for in field application. The test results show that the newly developed ceramic coupler provides equal and improved performance at a lower cost compared to epoxy mica couplers, and estimated voltage life is anticipated to surpass 100 years.

Investigations on PD Characteristics of Thermal aged Palm and Corn Oil for Power Transformer Insulation Applications

  • Senthilkumar, S.;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1660-1669
    • /
    • 2014
  • Partial discharge (PD) detection plays a major role in the life time assessment of liquid insulation in power transformers. Many research works are being carried out to replace conventional mineral oil insulation in transformers by vegetable oils. It is necessary to understand the PD characteristics of vegetable oils before recommending them as an alternate for mineral oil. In this paper, the breakdown strength and PD characteristics of palm and corn oil were investigated in both unaged and thermally aged conditions. Laboratory experiments were performed as per IEC test procedures. PD signals were measured using wide band detection system. Phase resolved PD pattern of vegetable oils and mineral oil were compared. Effect of increase in voltage stress on the PD pattern of palm and corn oil were studied. Time and frequency domain analysis of PD pulses at needle-plane electrode configuration was carried out. Statistical analysis of PD pattern i.e. skewness and shape parameter variations with respect to applied thermal stress were also carried out. From the results, it is observed that palm and corn oils have better breakdown strength and PD characteristics even under long-term thermal stress and hence they can be used for power transformer applications.

Study of Thermal Conductivity and Mechanical Property of Elastic Epoxy (탄성형 에폭시의 열전도율 및 기계적 특성에 대한 연구)

  • Lee, Kwan-Woo;Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Bok-Ki;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.319-322
    • /
    • 2004
  • In this paper, we studied on the thermal conductivity and a mechanical property of the elastic epoxy. According to industrial development, insulation materials have various properties. They are solid, liquid, gas state, there are various type. Epoxy, a kind of insulation material, demand of not only high hardness but also elastic property. When the electric current flows into the conductor and the place where the heat occurs, this heat becomes the cause which shortens the life of the electrical appliance. Therefore, for the heat occurred transmit quickly, thermal conductivity of the insulation material is highly demanded. We studied on the thermal conductivity of elastic epoxy on the high voltage. In this result, thermal conductivity confirmed that it followed thermal property of mixed epoxy and addictives. Hardness is decreased when addictives increased.

  • PDF

Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances (친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.

A numerical study on the fatigue evaluation of mark-III LNG primary barrier (수치해석을 이용한 Mark-III LNG 1차 방벽에 대한 피로 평가)

  • Kwon, Sun-Beom;Kim, Myung-Sung;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.337-344
    • /
    • 2017
  • The demand of liquified natural gas is increasing due to environmental issues. This reason has resulted in increasing the capacity of liquified natural gas cargo tank. The Mark-III type primary barrier directly contacts liquified natural gas. Also, the primary barrier is under various loading conditions such as weight of liquified natural gas and sloshing loads. During a ship operation, various loads can cause fatigue failure. Therefore, the fatigue life prediction should be evaluated to prevent leakage of liquified natural gas. In the present study, the fatigue analysis of insulation system including primary barrier is performed using a finite element model. The fatigue life of primary barrier is carried out using a numerical study. The value of principle stress and the location of maximum principle stress range are calculated, and the fatigue life is evaluated. In addition, the effects on the insulation panel status and the arrangement of knot or corrugation are analyzed by comparing the fatigue life of various models. The insulation system which has best structural performance of primary barrier was selected to ensure structural integrity in fatigue assessment. These results can be used as a design guideline and a fundamental study for the fatigue assessment of primary barrier.

Study on the Estimation of Long Life Cycle and Reliability Tests for Epoxy Insulation Busway System (에폭시 박막 절연형 버스웨이 시스템의 장기 수명 및 신뢰성 평가에 관한 연구)

  • Jang, Dong-Uk;Park, Seong-Hee;Lee, Kang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.261-268
    • /
    • 2018
  • The use of electric cable was limited due to the installation time and large space as the increase of power demand and load quantity in side line. In order to solve these problems, the application of busway system which can supply the large current was increasing. But it was lack of methods of performance tests to evaluate the reliability and results of test for busway system. In this paper, we presented items to evaluate the reliability test for epoxy coated busway system with reference to IEC 61349-6. In addition, we proposed items to evaluate the reliability and long term life cycle test for the epoxy coated busway system. The combined acceleration deterioration test that reflects actual conditions of the survey as much as possible was conducted considering both thermal and electrical stresses. The deterioration condition was selected to satisfy fifty years life expectation and the insulation performance verification test of the busway system confirmed the long term life prediction. Furthermore, as test items for reliability assessment of compliance with the environment for the use of temperature, humidity and load current where busway system was installed, thermal overload test, water immersion test, cold shock temperature test and thermal cycle test were performed. And we examined changes in characteristics and abnormality after tests. From results, the test items presented to evaluate performance and reliability of the epoxy insulated busway system were confirmed to be appropriate in this paper, and the performance of the product was also confirmed to be excellent for reliability tests.