• Title/Summary/Keyword: Insulation failure

Search Result 189, Processing Time 0.029 seconds

Breakdown Voltage and Partial Discharge Characteristics at the Simulated Interface in a Prefabricated Joint for Ultra High Voltage Cable (초고압용 조립형 접속함 모의계면에서 압력에 따른 절연파괴 및 부분방전 특성)

  • Kim, J.N.;Baek, J.H.;Shin, D.S.;Lee, C.Y.;Kim, C.S.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1099-1101
    • /
    • 1999
  • PJB(Prefabricated Joint Box) is consisted of three major components ; an epoxy unit, a stress relief cone and a spring unit. The insulation structure of PJB is maintained by the interfacial pressure, and the dielectric performance at the interface depends on the interfacial pressure which is regarded as the most important factor for preventing breakdown failure. This experiment was performed to investigate breakdown voltage characteristic and partial discharge patterns under the controlled pressure conditions at the simulated interface. Finally, this paper presents the optimal pressure conditions at the interface by analyasing the PD patterns.

  • PDF

Contact Stress Analysis of Stick Type Ignition Coil Jacket PET (Stick Type Ignition Coil Jacket PET의 접촉응력 해석)

  • Kim Yang-Sul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.1-6
    • /
    • 2005
  • Stick type ignition coil is new development that connect directly with ECU(Electronic control unit), without needing a spark plug cable and distributor. Glass-fiber reinforced ploymeric composites provide the desirable properties of high stiffness and strength as well as low specific weight. Stick type ignition coil jacket is using PBT CF30 resin. PBT CF30 resin is a kind of electric insulation which is a superior engineering plastic that is used to prevent the leakage of the electrical current. If PET receive a mistake of design or excessive force when HV terminal oppress on jacket, it can happen to crack. Local stress concentrations occurring on the contact surface, the contact phenomenon becomes a direct cause to the wear and failure of mechanical structures. When it is cracked, it can allow a leakage of the electrical current. So, in this study, we analyze the contact stress to PBT jacket using ANSYS program, when HV terminal oppress on jacket. We suppose PBT to be Jacket and we analyzed contact stress that happens in PET like PBT analysis method. We compared the use of PBT and PET.

Properties and classification of air discharge by Kohonen network (기중방전의 특성분석과 Kohonen network에 의한 방전원의 패턴분류)

  • 강성화;박영국;이광우;김완수;이용희;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.704-707
    • /
    • 1999
  • Partial discharge(PD) in air insulated electric power systems is responsible for considerable power lossesfrom high voltage transmission lines. PD in air often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the action of chemical compounds that are formed by the discharge and may give rise to interference in ommunication systems. PD can indicate incipient failure. Thus understanding and classification of PD in air is very important to discern source of PD. In this paper, we investigated PD in air by using statical method. We classified air discharge with corona, surface discharge and cavity discharge by source of discharge. we used the mean pulse-height phase distribution $H_{qmean}(\psi)$, the max pulse-height phase distribution $H_{qmax}(\psi)$ , the pulse count phase distribution $H_n(\psi)$ and the max pulse height vs. repetition rate $H_{q}(n)$ for analysis PD pattern. We used statistical operators, such as skewness(S+. S-1, kurtosis(K+, K-), mean phase(AP+. AP-), cross-correlation factor(CC) and asymmetry from the distribution.

  • PDF

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Fire performance of concrete-filled steel tubular columns strengthened by CFRP

  • Tao, Zhong;Wang, Zhi-Bin;Han, Lin-Hai;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.307-324
    • /
    • 2011
  • With the increasing use of concrete-filled steel tubes (CFST) as structural members, there is a growing need to provide suitable measures for possible strengthening or repair of these kinds of structural elements. Fibre reinforced polymer (FRP) jacketing is a recent method and is particularly attractive in which it does not significantly increase the section size, and is relatively easy to install. Thus, it can be used to enhance strength and/or ductility of CFST members. Very little information is available on the performance of FRP-strengthened CFST members under fire conditions. This paper is an attempt to study the fire performance of CFST columns strengthened by FRP. The results of fire endurance tests on FRP-strengthened circular CFST columns are presented. Failure modes of the specimens after exposure to fire, temperatures in the cross section, axial deformation and fire resistance of the composite columns are analysed. It is demonstrated that the required fire endurance can be achieved if the strengthened composite columns are appropriately designed.

A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor (유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

Analysis on the Switching Surge characteristic of Cable Pulling of High-Voltage Induction Motor Fed by Inverter (인버터 구동 고압 유도전동기의 케이블 포설시 스위칭 써지 특성 분석)

  • Kwon, Young-Mok;Kim, Jae-Chul;Song, Seung-Yeop;Shin, Joong-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.63-65
    • /
    • 2004
  • The recent advancement in the power electronic technique has increased the use of induction motor fed by inverter using high-frequency switching devices. Also the tendency is toward larger size and higher voltage. Therefore, The IGBT (Insulated-Gate Bipolar Transistor) that is high switching frequency element has been using increase. But, The switching surge voltage was occurred by high switching frequency of inverter has appeared a voltage doubling in the motor input terminal due to mismatching of cable characteristic impedance and motor characteristic impedance. Actually, The Switching surge voltage became the major cause to occur the insulation failure by serious voltage stress in the stator winding of induction motor. The short during rise time of switching surge and cable length is increased, the maximum transient voltage seen at the motor terminals increases. In this paper, Analyzed switching surge transient voltage of power cable pulling is used EMTP(Electromagnetic Transient Program) at the induction motor terminal and in cable.

  • PDF

Development of Dielectric Constant Sensor for Measurementof Lubricant Properties (윤활유 물성 측정을 위한 유전상수 센서 개발)

  • Hong, Sung-Ho;Kang, Moon-Sik
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.203-207
    • /
    • 2021
  • This study presents the development of dielectric constant sensors to measure lubricant properties. The lubricant oil sensor is used to measure oil properties and machine conditions. Various condition monitoring methods are applied to diagnose machine conditions. Machine condition monitoring using oil sensors has advantage over other machine condition monitoring methods. The fault conditions can be noticed at the early stages by the detection of wear particles using oil sensors. Therefore, it provides an early warning in the failure procedure. A variety of oil sensors are applied to check the machine condition. Among all oil sensors, only one sensor can measure the tendency of several properties such as acidity and water content. A dielectric constant sensor is also used to measure various oil properties; therefore, it is very useful. The dielectric constant is the ratio of the capacitance of a capacitor using that material as a dielectric to that of a similar capacitor using vacuum as its dielectric. The dielectric constant has an effect on water content, contaminants, base oil, additive, and so forth. In this study, the dielectric constant sensor is fabricated using MEMS process. In the fabrication process, the shape, gap of the electrode array, and thickness of the insulation material are considered to improve the sensitivity of the sensor.

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.

Multiple accelerated degradation test and failure analysis for $Ni-BaTiO_3$ MLCCs ($Ni-BaTiO_3$ MLCCs에 대한 복합 가속 열화 시험 및 고장 분석)

  • Kim, Jung-Woo;Kim, Jin-Seong;Lee, Hee-Soo;Kang, Do-Won;Kim, Jeong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.102-105
    • /
    • 2009
  • The accelerated life time test of the MLCCs with different $BaTiO_3$ particle sizes were conducted at $150^{\circ}C$, 75 V condition and the effect of $BaTiO_3$ particle size on the breakdown voltage and degradation characteristics of MLCCs was investigated. The MLCCs were prepared by using the $BaTiO_3$ particles having the size of $0.525{\mu}m$, $0.555{\mu}m$, $0.580{\mu}m$ and Ni-electrode, respectively. The MLCCs which have the particle size of $0.525{\mu}m$, $0.555{\mu}m$, and $0.580{\mu}m$, respectively were confirmed to meet the standard requirements of X5R(change capacitance within ${\pm}15%$ at $-55{\sim}85^{\circ}C$) by TCC(Temperature Coefficient of Capacitance). The effect of the $BaTiO_3$ particle size on the insulation resistance behavior of MLCCs was confirmed by BDV(Breakdown Voltage) measurements and the cause and degree of degradation of MLCCs were characterized by XPS analysis after the accelerated life test. The MLCCs with $0.525{\mu}m-BaTiO_3$ showed better insulation resistance and BDV characteristics compare to other MLCCs and XPS analysis revealed that the MLCCs degradation is caused by the NiO peak and $BaTiO_3$ peak decrease.