• 제목/요약/키워드: Insulation and Condensation Performance Evaluation

검색결과 14건 처리시간 0.019초

트러스 단열 프레임을 이용한 건식 외단열 시스템의 외피 종합 성능 평가 (Evaluation of Building Envelope Performance of a Dry Exterior Insulation System Using Truss Insulation Frame)

  • 송진희;이동윤;신동일;전현도;박철용;김상균
    • 대한건축학회논문집:구조계
    • /
    • 제35권6호
    • /
    • pp.153-164
    • /
    • 2019
  • The presence of thermal bridges in a building envelope cause additional heat loss which increases the heating energy. Given that a higher building insulation performance is required in these cases, the heat loss via thermal bridges is a high proportion of the total heat energy consumption of a building. For the dry exterior insulation system that uses mullions and transoms to fix insulation and exterior materials such as stone and metal sheet, the occurrence of thermal bridges at mullions and transoms is one of the main reasons for heat loss. In this study, a dry exterior insulation system using the truss insulation frame (TIF) was proposed as an alternative to metal mullions. To evaluate the building envelope performance, structural, air-leakage, water-leakage, fire-resistance, thermal, and condensation risk tests were conducted. In addition, the annual energy consumption associated with heating and cooling was calculated, including the linear thermal transmittance of the thermal bridges. As a result, the dry exterior insulation system using TIF achieved the allowable value for all tests. It was also determined that the annual heating load of a building was reduced by 36.7 % when the TIF dry exterior insulation system was used, relative to the dry exterior insulation system using steel pipes without additional insulations.

스틸 스터드 모듈러 건축물 접합부위의 결로방지성능 개선방안 평가 (Evaluation of Condensation Resistance of Steel Stud Wall Corner Details in Modular Buildings)

  • 오지현;양시원;조봉호;김선숙
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.107-114
    • /
    • 2014
  • Modular systems are widely used in various building types including housing, dormitory, and barracks. Steel studs have many advantages over other materials as construction components of modular buildings in terms of seismic performance, durability and maintenance. However, steel stud modular systems also have weakness in condensation resistance due to high thermal conductivity of steel. The purpose of this study is to investigate the condensation resistance of steel stud wall corner details in modular buildings by thermal simulation. The condensation resistance was evaluated by temperature difference ratio according to ISO 13788. The result showed that there was little difference between the alternatives of adding cavity and insulation. Separation of interstitial steel studs showed outstanding effect on the improvement of temperature difference ratio.

공동주택의 단열 및 차양에 따른 구체축열시스템 냉방성능 평가 (Evaluation on Cooling Performance of Thermally Activated Building System by Insulation and Shading Conditions in Apartments)

  • 유미혜;여명석;이유지;정웅준;박상훈;김광우
    • 한국주거학회논문집
    • /
    • 제23권2호
    • /
    • pp.107-114
    • /
    • 2012
  • Thermally Activated Building System(TABS) is a radiant heating and cooling system which uses structures as thermal storage by embedding pipes in a concrete slab. Using TABS as the cooling system in residential buildings can reduce energy consumption and peak loads. But the ratio of cooling loads handled by TABS is low in the residential buildings which are significantly influenced by outside condition because condensation and over-cooling may occur. However, recent interest on energy-saving buildings is increasing and new residential buildings are expected to be less influenced by outside with high-insulation and shading. In such residential buildings, the heating and cooling loads and the range of load changes reduce. So the ratio of loads handled by TABS can increase. Therefore, this research investigates the cooling performance and energy performance of TABS in the residential buildings with less influence from outside using the simulation.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.