• 제목/요약/키워드: Insulation Strength

검색결과 638건 처리시간 0.028초

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • 제22권6호
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

The Cause Analysis of Pitting Corrosion on the Waterjet Impeller (물분사 추진기 임펠러 부식에 대한 원인분석)

  • Lee, Hyeong-Sin;Jung, Un-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권6호
    • /
    • pp.545-551
    • /
    • 2020
  • Cause analysis of surface pitting crack on a waterjet impeller was conducted. The waterjet impeller was made from stainless steel duplex 2205, which is more resistant to corrosion and local corrosion than typical stainless steel 316L and 317L, and has high mechanical strength, making it a useful material in various marine structures and seawater desalination facilities. The measurements were taken by scanning electron microscopy (SEM) and molecular ecological detection. The chemical composition of S was examined by SEM in the area of pitting corrosion. The dsrAB gene was detected on the sample of the pitting corrosion of the impeller through molecular ecological detection. Therefore, pitting corrosion on the surface of a waterjet impeller was caused by sulphite-reducing bacteria (SRB). To prevent the spread of SRB, management is required through high temperature treatments (over 65℃), pH management, or the insulation of a hull and waterjet.

Electrical Characteristic of a Suspended Porcelain Insulator with a 154 kV Transmission Line (154 kV 송전선로 자기재 현수 애자의 전기적 특성 규명에 관한 연구)

  • Jeon, Seongho;Choi, In-Hyuk;Kim, Taeyong;Lee, Youn-Jung;Koo, Ja-Bin;Son, Ju-Am;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제33권1호
    • /
    • pp.56-59
    • /
    • 2020
  • Porcelain insulators are typically exposed to surface discharge and lightning impulse in service. This study investigates the insulation characteristics of the external and internal discharges of a porcelain insulator with respect to its flashover for a 154 kV transmission line. The experiments are also conducted using a wet flashover test and an impulse test based on the external discharge and the internal penetration, to classify the flashover voltage-time curve of the porcelain insulator. When an impulse with a strength of 2,500 kV/㎲ was applied three times to 6.5 mm ceramic samples, electrical penetration of approximately 70% occurred. The impulse experiment confirmed that the electrical penetration inside the porcelain insulator coincided with the area where the electric field was concentrated. The wet flashover voltage test revealed that the flashover threshold voltage increases by approximately 7% after cleaning of the surface.

A Study on the Properties of Epoxy Based Powder Coating with Various Curing Agents (에폭시 분체도료의 경화제 종류에 따른 물성에 관한 연구)

  • Park, Jae-Hong;Shin, Young-Jo
    • Applied Chemistry for Engineering
    • /
    • 제9권1호
    • /
    • pp.58-65
    • /
    • 1998
  • Substituted dicyandiamide(Sub-DICY), Accelerated dicyandiamide(Acc-DICY), Trimellitic anhydride(TMA), Pyromellitic dianhydride(PMDA) and Phenolic curing agent(Ph.C.A.) are mainly used for epoxy powder coating curing agent. Various characteristics of epoxy films fully cured by optimum condition such as mechanical properties like $T_g$, tensile strength, elongation at break hardness, abrasion resistance and chemical properties like water absorption, acid resistance, alkali resistance and electrical properties, corrosion resistance are determined by various measuring devices and analyses devices. In conclusion, phenolic curing agent was shown excellent thoughness but severe color change as temperature increased. Acid anhydride has excellent insulation properties and color stability at elevated temperature but lower thoughness and adhesion to substrate. DICY curing agent was shown high water absorption and severe color chance as temperature increased.

  • PDF

Flame Resistance Performance of Architectural Membranes Using Basalt Woven Fabric (Basalt Woven Fabric을 적용한 건축용 막재의 난연특성)

  • Kim, JiHyeon;Song, Hun;Shin, HyeonUk
    • Fire Science and Engineering
    • /
    • 제30권2호
    • /
    • pp.35-42
    • /
    • 2016
  • The membrane structure provides high satisfaction with lightweight, improved workability, reduced cost, and a free shape. Thus, its applications expanding. On the other hand, in an architectural membrane that is vulnerable to fire, the development of various architectural membranes with flame resistance is in demand. Therefore, this study applied basalt woven fabric safety for flame resistance, excellent heat insulation and thermal properties on an architectural membrane. The PTFE- coated basalt woven fabric membrane was compared with a PTFE coated glass fiber membrane by DSC/TGA, strength properties, flammability, and incombustibility properties. In addition, this study confirmed the membrane applicability of basalt woven fabric and basalt-glass hybrid woven fabric through a comparison with existing architectural membranes.

Analysis of Accelerated Aging Natural Ester Oil and Mineral Oil in Distributional Transformers (배전용 변압기에서의 고온열화와 열 사이클 열화에 따른 식물유와 광유의 특성 분석)

  • An, Jung-Sik;Choi, Sun-Ho;Bang, Jeong-Ju;Jung, Joong-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제60권6호
    • /
    • pp.1163-1168
    • /
    • 2011
  • Most transformers use insulating and cooling fluids derived from petroleum crude oil, but mineral oil has some possibility of environmental pollution and fire with explosion. vegetable oil fluids extracted from seed has superior biodegradation and fire-resistant properties including an exceptionally high fire point enhancing fire safety. In this study, it is aimed at the practicality of substituting natural ester dielectric fluid for mineral oil in liquid insulation system of transformers. As a rise in coil winding temperature has a direct influence on transformer life time, it is important to evaluate the temperature rise of coil winding in vegetable oil in comparison with mineral oil. Four transformers for the test are designed with 10KVA, 13.2KV, one phase unit. The temperature are directly measured in insulating oil of these transformers with the two sorts of natural ester and mineral oil dielectric fluid respectively. Experiment for aging carry out two means. First means remained $120^{\circ}C$ that transformer of mineral oil were operated at 185% load. Second means is that insulating oils of two natural ester and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. For the heating, Transformers were operated at 185% load. For the cooling, cooling system was operated in the chamber. Samples were analyzed at 42, 63, 93, 143, 190, 240 300cycles. Analysis contents are dielectric strength, total acid value. Mineral oils compared results of first means with results of second means. And compared two sort natural esters respectively with mineral oil in second means.

Influence of the Insulating Properties on Charge Injection Phenomena of Biaxially-Drawn Polypropylene Film (이축 연신된 폴리프로필렌 필름의 전하주입 현상이 절연특성에 미치는 영향)

  • 이준웅;김병태;박승협
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제1권2호
    • /
    • pp.74-81
    • /
    • 1987
  • The reduction in dielectric strength of insulating polymer material when applying electric field is known to be substantial due to the trapped carrier effect. In this study, the carrier property of Biaxially-Drawn polypropylene, which has superior heat-resistance compared to ordinary one, is examined to improve electrical characteristics by measuring TSC spectra as a function of electric field applied to a sample of ($50{\mu}m$) thickness film. The TSC spectra in the temperature range of 303-413(K) and electric field of 2-80(MV/m) have shown no observable effect below 12(MV 1m) but TSC currents of Hetero-and Homo-peaks formed from trapped space charger and space charger injected from electrode have been observed above that point, which seems eventually lead to dielectric breakdown. Finally, this study has shown the superior dielectric proporty of Biaxially-Drawn polypropylene film compared to the non-oriented one for electrical insulation.

  • PDF

A Study on The Comparison of Mechanical Property Between The Staggered Stud Wood Wall and The Standard Wood Frame Wall (일반벽체와 교호 샛기둥 벽체의 역학적 성능 비교 연구)

  • Shim, Jae-Kwang;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.640-649
    • /
    • 2017
  • A comparative research on the traditional standard wood walls and other light-frame wood walls is necessary to expand the base of wooden buildings and improve consumer satisfaction. Therefore, in this research we looked for new possibilities through comparison of performance between standard wood wall and newly presented staggered stud wood wall. First, the strength characteristics of staggered stud wood walls were evaluated and the those of standard wood walls were compared. The ultimate load of the standard wall was larger than that of the staggered stud wood wall, because the cross section of the wood making up the standard wood wall was larger than that of the staggered stud wood wall. However, the statistical analysis between the two groups didn't showed a significance of 95% confidence level. This means that, staggered stud wood walls have shown the possibility of replacing the standard wood wall. Because the cross-section of the stud in the staggered stud wood walls is smaller than that of the standard wall, the material can be saved. Therefore, staggerd wood stud wall is judged to be more economical than the standard wall. In addition, since the area of the insulation also increases, improvement of the heat bridge is also expected.

Fabrication Technology of Turbo Charger Housing for Riser Minimizing by Fusion S/W Application and its Experimental Investigation (압탕 최소화를 위한 터보차저하우징의 융합 S/W 응용 제조기술 및 실험적 검증)

  • Lee, Hak-Chul;Seo, Pan-Ki;Jin, Chul-Kyu;Seo, Hyung-Yoon;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • 제37권1호
    • /
    • pp.1-13
    • /
    • 2017
  • The purpose of this study is to increase the part recovery rate (to more than 70%) during the casting of a ductile cast iron turbo charger housing using a heater around the riser. Before creating a casting mold, various runner and riser systems were designed and analyzed with a casting simulation analysis tool. The design variables were the heater temperature, top insulation, riser location, riser diameter and the riser shape. During the feeding from the riser to the part, the reverse model was better than the forward model. When heating the riser (above $600^{\circ}C$), solidification of the riser was delayed and the feeding effect was suitable compared to that without heating. At a higher heating temperature, less solidification shrinkage and porosity were noted inside the part. On the basis of a casting simulation, eight molds were fabricated and casting experiments were conducted. According to the experimental conditions, external and internal defects were analyzed and mechanical properties were tested. The ultimate tensile strength and elongation outcome were correspondingly more than 540MPa and 5% after a heat treatment. In addition, a maximum part recovery rate of 86% was achieved in this study.

Reliability assessment of mica high voltage capacitor through environmental test and accelerated life test (마이카 고전압 커패시터의 환경시험과 가속 수명시험을 통한 신뢰성 평가)

  • Park, Seong Hwan;Ham, Young Jae;Kim, Jeong Seok;Kim, Kyoung Hun;So, Seong Min;Jeon, Min Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제29권6호
    • /
    • pp.270-275
    • /
    • 2019
  • Mica capacitor is being adopted for high voltage firing unit of guided weapon system because of its superior impact enduring property relative to ceramic capacitor. Reliability of localized mica high voltage capacitors was verified through environmental test like terminal strength test, humidity test, thermal shock test and accelerated life test for application to high voltage firing unit. Failure mode of mica capacitor is a decrease of insulation resistance and its final dielectric breakdown. Main constants of accelerated life model were derived experimentally and voltage constant and activation energy were 5.28 and 0.805 eV respectively. Lifetime of mica capacitor at normal use condition was calculated to be 38.5 years by acceleration factor, 496, and lifetime at accelerated condition and this long lifetime confirmed that mica high voltage capacitor could be applied for firing unit.