• Title/Summary/Keyword: Insulation Panel

Search Result 221, Processing Time 0.026 seconds

An Analysis on Thermal Insulation Effect of Farm Structures Coated with Surface Treatment (표면코팅 구조재의 달열효과 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.39-46
    • /
    • 2004
  • This experiment was carried out to study on the effect of surface coating on thermal insulation of farm structures to improve thermal resistance and reflective effect of solar radiation. Nine different types of experimental specimen were compared in the temperature variations of inside and outside; A, B, C, D. E and F types are box container and G, H and I types are drum container. The size of these containers is $1,500{\times}2,000{\times}2,500$ mm and ${\varphi}$ $280{\times}330$ mm, respectively. Specimen of 3-type box(A, B, C) is galvanized steel sheet of thickness 0.45 mm. D, E and F types are sandwich panel of the thickness 50 mm inserted with urethane, glass wool and polystyrene form, respectively. G, H and I types are paint pot using in general. The surface of A. D, E, F and I types didn't any treatment, B, C and G types were treated with thermal insulation coating on the outside surface(B, G) or the inside and outside surface(C). And H type was treated with water paint coating on the only outside surface. In general, the experimental results showed the following tendencies; In case of A, B and C types. it was found that the thermal insulation effect of types coated with thermal insulation coating was improved remarkably than that of no treatment. And the thermal insulation effect between steel sheet and sandwich panel type was nearly similar There was not a significant difference of thermal insulation effect between thermal insulation coating and water paint coating. In time of drum container filled with rough rice, The difference of heat transfer tendency and temperature variation among surface treatments was nearly similar that of box types of galvanized steel sheet. And there was time lag about 6 hours between the temperature of middle part of rice and that of inside or outside surface.

Sound Insulation Strategy for the Tunnel Noise in a High Speed Train (고속철도차량의 터널 소음을 위한 차음 전략)

  • Kim, Seock-Hyun;Lee, Ho-Jin;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.315-322
    • /
    • 2012
  • In a tunnel, interior noise of a high speed train increases by 5dB~7dB. The reason is that the sound intensity of the acoustic field in the tunnel significantly increases by the reflected waves occurred in the closed space. Especially, the incident acoustic power largely increases on the outside of the compartment side panel and large transmission of noise is available through the side panel and the glass window. In this paper, the sound insulation strategy in the tunnel is proposed for the next generation high speed train under development. Specimens of the aluminum extruded panels, layered panels and double glazed window are manufactured and intensity transmission loss is measured according to ASTM E2249-02. Based on the measured data, problems in the sound insulation performance are diagnosed and the sound insulation strategy is reviewed on each panel and layered structures.

Evaluation of Fire Investigation as the Separation Distances for Several Types of Insulation Panels (단열패널 종류별 이격거리에 따른 화재감식 평가)

  • Kim, Jeong-Hun;Kim, Da-Seul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.403-412
    • /
    • 2021
  • Despite strengthening requirements for fire retardancy and applied buildings of insulation panels, the number of fires and influence of damage have increased. In this study, the thermal effects were evaluated as the separation distances, and three types of EPS panel, glass wool panel, and gypsum board panel were then selected. Temperature sensors on the panels were installed vertically from the ground. The fire source on the lamination layer of lumber was ignited by changes in the separation distances (0 cm, 25 cm, 50 cm) from the panels. The test results suggested that the maximum temperature was 349 ℃ in the EPS panel. The inside/outside shape changes were limited by the height of the low and middle positions until the critical point of a 25 cm separation distance. Furthermore, the combustion marks appeared after 500 s on average, and then the EPS panel with a high fire strength showed a broad "U type" pattern, glass wool panel, and gypsum board panel showed medium or narrow "V type" pattern. Therefore, the acquired data can provide valuable information for evaluating the fire risks and verifying fire investigation from buildings composed of these insulation panels.

Research on the Architectural Applications of High-Performance Vacuum Insulation Panel (고성능 진공단열재의 건축적인 적용에 관한 연구)

  • Kwon, Young Cheol;Kim, Suk
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • Vacuum Insulation Panel(VIP) has the lowest thermal conductivity among present insulations. It is composed of envelope, core material and getter. Aluminum film is usually used as the envelope of VIP, and it is important component to decide the useful life of VIP. In this research, the thermophysical properties of incombustible fiber glass core VIP were investigated with the possibility of its architectural applications. The results of this research can be summarized as follows: 1) The thermal conductivity of 20mm-thick fiber glass core VIP is resulted as 0.00177W/m·K, which means that 20mm-thick VIP can meet all the reinforced insulation guideline and it can be used in any envelope of any region in Korea. 2) As a result of the test of incombustion and gas toxicity, fiber glass core VIP was suitable for incombustible material. 3) As the test result for the long term thermal conductivity, fiber glass core VIP was found out that it would keep above 10 times insulating performance than polystyrene foam and glass fiber. 4) To meet the thermal transmittance of 0.12W/㎡K, limited-combustible insulation of expanded polystyrene foam and phenolic foam should be used respectively as thick as above 280mm and 170mm, incombustible VIP can meet the same insulation level with 20mm thickness. 5) The price competitiveness of incombustible VIP to meet the thermal transmittance of 0.12W/㎡·K was about 1,500won/㎡ higher than that of phenolic foam.

Quantity Estimation Method for High-Performance Insulated Wall Panels with Complex Details Using BIM Family Libraries (BIM의 패밀리 라이브러리를 이용한 복잡한 상세를 갖는 고단열 벽체 판넬의 물량 산출 방법)

  • Mun, Ju-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigates the effectiveness of Building Information Modeling(BIM) software, specifically SketchUp and Revit, in reducing errors during quantity take-off(QTO) for complex building elements. While 3D modeling offers advantages, existing software may not fully account for manufacturing discrepancies, such as variations in concrete cover thickness and reinforcing bar radius. To address this limitation, this research proposes a BIM-based QTO method for high-insulation wall panels with intricate details. The method utilizes a BIM family library, focusing on key parameters like concrete cover thickness and inner radius of shear reinforcement. A case study compared the cross-sectional details of a wall panel modeled in Revit with the actual manufactured specimen. The analysis revealed a 12% reduction in modeled concrete cover thickness and a 1.27 times larger modeled inner radius of the shear bar compared to the real-world values. The proposed method incorporates these manufacturing variations into the Revit model of the high-insulation wall panel. Software like Navisworks facilitates the identification and correction of any material interferences arising from these adjustments. Furthermore, the method employs a unit wall concept(1m2) to account for the volume of various materials, including insulation and splice sleeves at joints. This allows for the identification of a similar existing family within the BIM library(e.g., "Double RC wall with embedded insulation") that reflects the actual material quantities used in the wall panel. By incorporating these manufacturing-induced variations, the proposed method offers a more accurate QTO process for complex high-insulation wall panels. The "Double RC wall with embedded insulation" family within the Revit program serves as a valuable tool for material quantity estimation in such scenarios.

Comparison on Thermal Analysis Methods for Multi-Layer Insulation (다층박막단열재 열해석 방법 비교 연구)

  • Hyun, Bum-Seok;Kim, Hui-Kyung;Choi, Joon-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.290-295
    • /
    • 2003
  • Among the thermal analysis methods for Multi-Layer Insulation(MLI), effective emittance, diffusion MLI node and arithmetic MLI node methods are compared. The methods have been applied to the aluminum panel under the low earth orbit environment. TRASYS program is used for geometrical math modeling and SINDA program for thermal math modeling and temperature calculation. Test cases are selected according to MLI area on the panel. Temperature results are calculated and compared under the ratio of absorptivity and emissivity.

  • PDF

On the Leakage Analysis of a Full Containment Tank Using a FEM

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • In this paper, the leakage safety of prestressed concrete structure including the insulation panels has been analyzed using a finite element analysis just after a collapse of 9% nickel inner tank. This FEM study shows that the outer tank may contain the leaked cryogenic liquid for the time being until the primary pump in the inner tank transports stored cryogenic liquids to the nearest LNG storage tank before the outer tank is demolished. This means that the total tank thickness from the insulation panel to the outer tank system safely may retain the leaked cryogenic fluids. The FE computed results indicate that the current structure in a full containment tank is obviously enough to securing the leak-proof safety of the tank system with two primary pumps.

Analysis Sound Insulation Performance of a Corrugated Steel Panel Through Modal Density (주름 강판의 모드 밀도에 따른 차음 성능 분석)

  • Kim, Seockhyun;Byeon, Jun Ho;Lee, Joong Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1061-1066
    • /
    • 2016
  • Corrugation of a corrugated panel dramatically increases the bending stiffness per weight. However, corrugated panels show lower sound insulation performance than that of the flat plate having the same weight. Especially, in a particular frequency region, the sound transmission loss significantly decreases. Main reason of the problem is known as the local resonance. A number of local resonance modes occur above a certain frequency band and modal density rapidly increases. In this study, we investigate the relation of the sound transmission loss and the modal density. Finally, we propose a design methodology in terms of the modal density to improve the sound insulation performance of the corrugated panels without weight increase.

A Study of Cooling and Heating Load Changes with Roof Type Solar Panels Installed on Factory Roof (지붕형 태양광발전 패널의 공장 지붕 설치에 따른 냉방 및 난방 부하 변화량 연구)

  • Jo, Ho-Hyeon;Kim, Jung-Min;Kim, Young Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • In this study, effect of reinforced insulation on heating and cooling loads were studied due to installation of PV panels on factory building roof with a floor area of 12,960 m2. For PV panel installation, combination of aluminum, polyurethane, air, polystyrene and steel materials were added to the original roof, which increased thermal insulation performance. Half of the roof were covered with PV panel and the other half without. Temperature and relative humidity were measured for 8 days during summer season for both indoor spaces. PV panel showed the effect of lowering the indoor space temperature by 0.6℃. TRNSYS dynamic simulation showed that with PV panel, cooling load per area is reduced by 1.7 W/m2 and heating by 10.0 W/m2. PV panels installed on building roof not only generate electricity but also can save energy by reducing cooling and heating loads.

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.