• Title/Summary/Keyword: Insulation Efficiency

Search Result 321, Processing Time 0.027 seconds

Battery Charger for EV (전기자동차용 배터리 충전기)

  • Yun, Su-Young;Chae, Hyung-Jun;Kim, Won-Yong;Moon, Hyung-Tae;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.460-465
    • /
    • 2010
  • The interest is coming to be high, recently with depletion of the fossil fuel and with carbon dioxide exhaust limit about emittion, from a car of Internal combustion engine to Electric vehicle. AC-DC converter is necessary to battery charging which is an electric vehicle energy storage. Necessary conditions of the converter are necessary for wide output voltage range, high efficiency, high power factor etc. It is composed two stages for wide output voltage range and insulation. Preliminary stage uses LLC resonant converter and the after stage uses BOOST converter PFC circuit for being considered a power factor and confirmed experimentally.

Numerical Study on the Performance Characteristics of a Simultaneous Heating and Cooling Heat Pump System at each Operation Mode (동시냉난방 열펌프 시스템의 운전모드별 성능특성에 관한 수치적 연구)

  • Joo, Young-Ju;Jung, Hyun-Joon;Kang, Hoon;Choi, Jong-Min;Lee, Moo-Yeon;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.370-375
    • /
    • 2007
  • The cooling load in winter season is significant in many commercial buildings and hotels because of the usage of office equipments and high efficiency of wall insulation. The development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this numerical study, a 4-room simultaneous heating and cooling heat pump system was modeled and its performance was calculated at each operating mode. Also, performance analysis was compared with experimental results.

  • PDF

Development of several hundred kV Air Core pulse transformer (수백 kV급 공심형 펄스 변압기 개발)

  • Kim, S.C.;Park, S.S.;Kim, S.H.;Heo, H.;Nam, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2132-2135
    • /
    • 2005
  • Cylindrical type air core pulse transformers capable of passing high voltage and energy pulse waveforms with high efficiency and low distortion require a much more delicate design balance of physical dimensions and electrical parameters than iron or ferrite core units. The structure of an air core high voltage pulse transformer is relatively simple, but considerable attention is needed to prevent breakdown between transformer windings. Since the thickness of the windings in spiral type is on the order of sub-millimeter, field enhancement at the edge of the windings is very high. It is, therefore, important to find proper electrical insulation Parameter to make the system compact. Several shapes of the winding are considered for air core pulse transformer development. In this paper, we are described design procedure, parameters measure and experiment results of air core type HV pulse transformer.

  • PDF

Design of the Two-Stage DC-DC Converter for 1kW Fuel Cell Power Generation System (1kW급 연료전지 발전용 2단 구성 방식의 DC-DC 컨버터 설계)

  • Yoo, Ho-Won;Jung, Yong-Min;Lim, Seung-Beom;Lee, Jun-Young;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.206-208
    • /
    • 2008
  • In this paper, the two-stage DC-DC converter is proposed to make the control simple and to boost the low input voltage in the fuel cell generating system. The low efficiency of the conventional power converter is caused by a characteristic of the low-voltage and high-current in the fuel cell generating system. High-frequency transformer is needed to block the noise and to guarantee the safety of cell and load as a magnetically insulation. The proposed two-stage DC-DC converter for a fuel cell generation is more efficient than the traditional one-stage converter and easy to control. The design of a high-frequency transformer is also simple. Finally, the utility of the proposed converter is proved by the simulations and experiments.

  • PDF

A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor (유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

A Case Study(1) of Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA (국가기간시설물의 전식대책(안) 및 그 적용 사례(1))

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1612-1614
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP system is described.

  • PDF

A Study on the Phase Transfer and Electrical Properties of PBLG and PBDG (PBLG와 PBDG의 상전이와 전기특성에 관한 연구)

  • Kim, Beyung-Geun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.400-403
    • /
    • 2003
  • Recently, the study on development of electrical and electronic device is done to get miniature, high degrees of integration and efficiency by using inorganic materials. the study of Langmuir-Boldgett(LB) method that uses organic materials because of the limitation for the ultra small size. In this paper, detected displacement current using PBLG and PBDG, deposition and observed the electrical characteristics to each 1, 3, 5, 7, 9 layers by LB method. Maximum value of change ratio of displacement current by the detected speed and temperature appeared almost lineally, could confirm that it are in comparison relation each other speed temperature and displacement current. The structure of manufactured device is MIM. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V]. The insulation property of a thin film is better as the distance between electrodes is larger.

  • PDF

Performance test of scale-up $20Nm^3/hr$ scale hydrogen generator for hydrogen station (수소스테이션용 $20Nm^3/hr$급 수소제조장치 스케일-업 및 성능시험)

  • Oh, Young-Sang;Baek, Young-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.37-42
    • /
    • 2006
  • In this study, $20Nm^3/hr$ scale compact hydrogen generator which can be apply to the hydrogen station was tested for hydrogen station application. $20Nm^3/hr$ scale compact hydrogen generator was developed by upgrading concept of stacking plate reactor from former $20Nm^3/hr$ scale plate hydrogen generator. concepts for improving system efficiency and performance include such as idea of heat recovery from the exhaust, exhaust duct which is especially design for plate type reactor reinforcement of insulation, enlargement of heat exchange area of reactor, introduction of desulphurizer reactor and PROX rector in a compact design, introduction of back fire protection structure of plate burner and so on, We can learn that final prototype of scale-up $20Nm^3/hr$ scale compact hydrogen generator can be operated steadily in 100% road at which over 94% of methane conversion(S/C=3.75) was obtained. In case of making up the weak point, we expect that it is possible to apply to hydrogen station by way of showing an example.

  • PDF

Improvement of Design Criteria in Heating and Cooling Equipment According to the Consolidation of Design Standard for Energy Saving in Apartment Buildings of Korea (국내 공동주택의 에너지절약 설계기준 강화에 따른 냉난방설비 설계 기준 개선 방안)

  • Lim, Jae-Han;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.89-97
    • /
    • 2014
  • Recently design standard for energy-saving in apartment buildings has been consolidated gradually on the basis of evaluation and certification standards of energy efficiency of buildings, the energy-saving policy of building at home and abroad. Performance criteria for thennal insulation as well as fenestration has been progressively enhanced, and performance criteria for ventilation and airtightness of the building have also been re-developed. Therefore, heating and cooling load characteristics of the apartment building can be changed. For the design of the upcoming heating and cooling equipment in apartment buildings, it is necessary to evaluate the heating and cooling load characteristics according to the design strategies for energy saving in apartment buildings. As a result, in this study, it is intended to use as a resource for analyzing the impact that the adoption of energy-saving design variables for each of the apartment buildings, to predict the heating and cooling load characteristics in the apartment building.

An Experimental Study on the Cooling Characteristics of an Infrared Detector Cryochamber (적외선 센서용 극저온 용기의 냉각특성에 관한 실험적 연구)

  • Kang Byung Ha;Lee Jung Hoon;Kim Ho-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.889-894
    • /
    • 2004
  • Infrared (IR) detectors are widely used for many applications, such as temperature measurement, intruder and fire detection, robotics and industrial equipment, thermoelstic stress analysis, medical diagnostics, and chemical analysis. Quantum detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal analysis of cryochamber includes the conduction heat transfer through a cold well, the gases conduction and gas outgassing, as well as radiation heat transfer, The transient cooling characteristics of an infrared detector cryochamber are investigated experimentally in the present study. The transient cooling load increases as the gas pressure is increased. Gas pressure becomes significant as the cooling process proceeds. Cool down time is also increased as the gas pressure is increased. It is also found that natural convection effects on cool down time become significant when the gas pressure is increased.